Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In many applications, one can define a large set of features to support the classification task at hand. At test time, however, these become prohibitively expensive to evaluate, and only a small subset of features is used, often selected for their information-theoretic value. For threshold-based, Naive Bayes classifiers, recent work has suggested selecting features that maximize the expected robustness of the classifier, that is, the expected probability it maintains its decision after seeing more features. We propose the first algorithm to compute this expected same-decision probability for general Bayesian network classifiers, based on compiling the network into a tractable circuit representation. Moreover, we develop a search algorithm for optimal feature selection that utilizes efficient incremental circuit modifications. Experiments on Naive Bayes, as well as more general networks, show the efficacy and distinct behavior of this decision-making approach.