Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Our understanding of the long‐term evolution of the Earth system is based on the assumption that terrestrial weathering rates should respond to, and hence help regulate, atmospheric CO2and climate. Increased terrestrial weathering requires increased carbonate accumulation in marine sediments, which in turn is expected to result in a long‐term deepening of the carbonate compensation depth (CCD). Here, we critically assess this long‐term relationship between climate and carbon cycling. We generate a record of marine deep‐sea carbonate abundance from selected late Paleocene through early Eocene time slices to reconstruct the position of the CCD. Although our data set allows for a modest CCD deepening, we find no statistically significant change in the CCD despite >3 °C global warming, highlighting the need for additional deep‐sea constraints on carbonate accumulation. Using an Earth system model, we show that the impact of warming and increased weathering on the CCD can be obscured by the opposing influences of ocean circulation patterns and sedimentary respiration of organic matter. From our data synthesis and modeling, we suggest that observations of warming, declining δ13C and a relatively stable CCD can be broadly reproduced by mid‐Paleogene increases in volcanic CO2outgassing and weathering. However, remaining data‐model discrepancies hint at missing processes in our model, most likely involving the preservation and burial of organic carbon. Our finding of a decoupling between the CCD and global marine carbonate burial rates means that considerable care is needed in attempting to use the CCD to directly gauge global carbonate burial rates and hence weathering rates.more » « less
-
Changes in the concentration and isotopic composition of the major constituents in seawater reflect changes in their sources and sinks. Because many of the processes controlling these sources and sinks are tied to the cycling of carbon, such records can provide insights into what drives past changes in atmospheric carbon dioxide and climate. Here, we present a stable strontium (Sr) isotope record derived from pelagic marine barite. Our δ88/86Sr record exhibits a complex pattern, first declining between 35 and 15 million years ago (Ma), then increasing from 15 to 5 Ma, before declining again from ~5 Ma to the present. Numerical modeling reveals that the associated fluctuations in seawater Sr concentrations are about ±25% relative to present-day seawater. We interpret the δ88/86Sr data as reflecting changes in the mineralogy and burial location of biogenic carbonates.more » « less
-
null (Ed.)Abstract. The metals strontium (Sr), lithium (Li), osmium (Os) and calcium (Ca), together with their isotopes, are important tracers of weathering and volcanism – primary processes which shape the long-term cycling of carbon and other biogeochemically important elements at the Earth's surface. Traditionally, because of their long residence times in the ocean, isotopic shifts in these four elements observed in the geologic record are almost exclusively interpreted with the aid of isotope-mixing, tracer-specific box models. However, such models may lack a mechanistic description of the links between the cycling of the four metals to other geochemically relevant elements, particularly carbon, or climate. Here we develop and evaluate an implementation of Sr, Li, Os and Ca isotope cycling in the Earth system model cGENIE. The model offers the possibility to study the dynamics of these metal systems alongside other more standard biogeochemical cycles, as well as their relationship with changing climate. We provide examples of how to apply this new model capability to investigate Sr, Li, Os and Ca isotope dynamics and responses to environmental change, for which we take the example of massive carbon release to the atmosphere.more » « less
An official website of the United States government
