skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inclusion of a suite of weathering tracers in the cGENIE Earth system model – muffin release v.0.9.23
Abstract. The metals strontium (Sr), lithium (Li), osmium (Os) and calcium (Ca), together with their isotopes, are important tracers of weathering and volcanism – primary processes which shape the long-term cycling of carbon and other biogeochemically important elements at the Earth's surface. Traditionally, because of their long residence times in the ocean, isotopic shifts in these four elements observed in the geologic record are almost exclusively interpreted with the aid of isotope-mixing, tracer-specific box models. However, such models may lack a mechanistic description of the links between the cycling of the four metals to other geochemically relevant elements, particularly carbon, or climate. Here we develop and evaluate an implementation of Sr, Li, Os and Ca isotope cycling in the Earth system model cGENIE. The model offers the possibility to study the dynamics of these metal systems alongside other more standard biogeochemical cycles, as well as their relationship with changing climate. We provide examples of how to apply this new model capability to investigate Sr, Li, Os and Ca isotope dynamics and responses to environmental change, for which we take the example of massive carbon release to the atmosphere.  more » « less
Award ID(s):
1658024 1702913
PAR ID:
10298565
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
14
Issue:
7
ISSN:
1991-9603
Page Range / eLocation ID:
4187 to 4223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models. 
    more » « less
  2. Brenner, L (Ed.)
    The geochemistry of marine carbonates frequently reflects the environmental factors that influence their growth, such as climate and/or water quality. Barnacles are sessile crustaceans with shells that provide such environmental archiving. The bay barnacle, Amphibalanus improvisus, was found in the Hudson River at Piermont, NY and Nyack, NY and was the most abundant species identified. To expand the geographic perspective, Amphibalanus eburneus and Semibalanus balanoides barnacles were collected in Rye, NY on the Long Island Sound coast. However, this did not permit a perfect comparison as these species were not identified at the Hudson River sites. Barnacle samples were cleaned and organic matter removed with a multi-step process that included a vinegar scrub, short bleach bath, and ultrasonication in milli-Q water. Trace metals in calcium carbonate barnacle shells were analyzed via quadrupole mass spectrometer. The analysis focuses on Mg, Sr, Ba, Na, and Y to Ca ratios. There was geographic variation in barnacle Y/Ca, Ba/Ca, and Na/Ca values. This may indicate that the concentrations of these trace metals in the waters of the three places do vary, suggesting there could be potential to explore these measurements as an environmental proxy. The Mg/Ca and Sr/Ca inter-site variability was more difficult to quantify. Although Mg/Ca and Sr/Ca are known paleothermometers in other archives, more work needs to be done to determine their efficacy in these locations. Ultimately, this preliminary data and assessment shows that these metals can be recorded in barnacle shells and opens the door to future environmental- or climate-proxy development in the Hudson River and Long Island Sound. 
    more » « less
  3. Jacobson, A. (Ed.)
    Ocean anoxic events (OAE) are characterized by increased organic content of marine sediment on a global scale with accompanying positive excursions in sedimentary organic and inorganic d 13C values. To sustain the increased C exports and burial required to explain the C isotope excursion, increased supplies of nutrients to the oceans are often invoked during ocean anoxic events. The potential source of nutrients in these events is investigated in this study for Oceanic Anoxic Event 2, which spans the Cenomanian-Turonian boundary. Massive eruptions of one or more Large Igneous Provinces (LIPs) are the proposed trigger for OAE 2. The global warming associated with volcanogenic loading of carbon dioxide to the atmosphere has been associated with increased continental weathering rates during OAE 2, and by extension, enhanced nutrient supplies to the oceans. Seawater interactions with hot basalts at LIP eruption sites can further deliver ferrous iron and other reduced metals to seawater that can stimulate increased productivity in surface waters and increased oxygen demand in deep waters. The relative importance of continental and submarine weathering drivers of expanding ocean anoxia during OAE 2 are difficult to disentangle. In this paper, a box model of the marine Sr cycle is used to constrain the timing and relative magnitudes of changes in the continental weathering and hydrothermal Sr fluxes to the oceans during OAE 2 using a new high-resolution record of seawater 87Sr/86Sr ratios preserved in a marl-limestone succession from the Iona-1 core collected from the Eagle Ford Formation in Texas. The results show that seawater 87Sr/86Sr ratios change synchronously with Os isotope evidence for the onset of massive LIP volcanism 60 kyr before the positive C isotope excursion that traditionally marks the onset of OAE 2. The higher temporal resolution of the seawater Sr isotope record presented in this study warrants a detailed quantitative analysis of the changes in continental weathering and hydrothermal Sr inputs to the oceans during OAE 2. Using an ocean Sr box model, it is found that increasing the continental weathering Sr flux by  1.8-times captures the change in seawater 87Sr/86Sr recorded in the Iona-1 core. The increase in the continental weathering flux is smaller than the threefold increase estimated by studies of seawater Ca isotope changes during OAE 2, suggesting that hydrothermal forcing may have played a larger role in the development of ocean anoxic events than previously considered. 
    more » « less
  4. Jacobson, A. (Ed.)
    Ocean anoxic events (OAE) are characterized by increased organic content of marine sediment on a global scale with accompanying positive excursions in sedimentary organic and inorganic d 13C values. To sustain the increased C exports and burial required to explain the C isotope excursion, increased supplies of nutrients to the oceans are often invoked during ocean anoxic events. The potential source of nutrients in these events is investigated in this study for Oceanic Anoxic Event 2, which spans the Cenomanian-Turonian boundary. Massive eruptions of one or more Large Igneous Provinces (LIPs) are the proposed trigger for OAE 2. The global warming associated with volcanogenic loading of carbon dioxide to the atmosphere has been associated with increased continental weathering rates during OAE 2, and by extension, enhanced nutrient supplies to the oceans. Seawater interactions with hot basalts at LIP eruption sites can further deliver ferrous iron and other reduced metals to seawater that can stimulate increased productivity in surface waters and increased oxygen demand in deep waters. The relative importance of continental and submarine weathering drivers of expanding ocean anoxia during OAE 2 are difficult to disentangle. In this paper, a box model of the marine Sr cycle is used to constrain the timing and relative magnitudes of changes in the continental weathering and hydrothermal Sr fluxes to the oceans during OAE 2 using a new high-resolution record of seawater 87Sr/86Sr ratios preserved in a marl-limestone succession from the Iona-1 core collected from the Eagle Ford Formation in Texas. The results show that seawater 87Sr/86Sr ratios change synchronously with Os isotope evidence for the onset of massive LIP volcanism 60 kyr before the positive C isotope excursion that traditionally marks the onset of OAE 2. The higher temporal resolution of the seawater Sr isotope record presented in this study warrants a detailed quantitative analysis of the changes in continental weathering and hydrothermal Sr inputs to the oceans during OAE 2. Using an ocean Sr box model, it is found that increasing the continental weathering Sr flux by 1.8-times captures the change in seawater 87Sr/86Sr recorded in the Iona-1 core. The increase in the continental weathering flux is smaller than the threefold increase estimated by studies of seawater Ca isotope changes during OAE 2, suggesting that hydrothermal forcing may have played a larger role in the development of ocean anoxic events than previously considered. 
    more » « less
  5. Abstract. The response of the hydrological cycle to anthropogenic climatechange, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics,rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annualresolution. Climate reconstructions based on corals primarily use the stable oxygen isotope composition (δ18O), which acts as a proxy for sea surface temperature (SST), and the oxygen isotope composition ofseawater (δ18Osw), a measure of hydrological variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variabilitythrough time. To increase the utility of such reconstructions, we presentthe CoralHydro2k database, a compilation of published, peer-reviewed coral Sr/Ca and δ18O records from the Common Era (CE). The database contains 54 paired Sr/Ca–δ18O records and 125 unpaired Sr/Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to the present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the useof the database. The CoralHydro2k database tracks large-scale temperatureand hydrological variability. As such, it is well-suited for investigationsof past climate variability, comparisons with climate model simulationsincluding isotope-enabled models, and application in paleodata-assimilation projects. The CoralHydro2k database is available in Linked Paleo Data (LiPD) format with serializations in MATLAB, R, and Python and can be downloaded from the NOAA National Center for Environmental Information's Paleoclimate Data Archive at https://doi.org/10.25921/yp94-v135 (Walter et al., 2022). 
    more » « less