skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1658377

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Estuaries may be uniquely susceptible to the combined acidification pressures of atmospherically driven ocean acidification (OA), biologically driven CO 2 inputs from the estuary itself, and terrestrially derived freshwater inputs. This study utilized continuous measurements of total alkalinity (TA) and the partial pressure of carbon dioxide (pCO 2 ) from the mouth of Great Bay, a temperate northeastern U.S. estuary, to examine the potential influences of endmember mixing and biogeochemical transformation upon estuary buffering capacity ( β – H ). Observations were collected hourly over 28 months representing all seasons between May 2016 and December 2019. Results indicated that endmember mixing explained most of the observed variability in TA and dissolved inorganic carbon (DIC), concentrations of which varied strongly with season. For much of the year, mixing dictated the relative proportions of salinity‐normalized TA and DIC as well, but a fall season shift in these proportions indicated that aerobic respiration was observed, which would decrease β – H by decreasing TA and increasing DIC. However, fall was also the season of weakest statistical correspondence between salinity and both TA and DIC, as well as the overall highest salinity, TA and β – H . Potential biogeochemically driven β – H decreases were overshadowed by increased buffering capacity supplied by coastal ocean water. A simple modeling exercise showed that mixing processes controlled most monthly changes in TA and DIC, obscuring impacts from air–sea exchange or metabolic processes. Advective mixing contributions may be as important as biogeochemically driven changes to observe when evaluating local estuarine and coastal OA. 
    more » « less