skip to main content


Search for: All records

Award ID contains: 1658475

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.

     
    more » « less
  2. Abstract

    This study examines an unprecedented bloom ofEmiliania huxleyialong the California coast during the NE Pacific warm anomaly of 2014–2015. Observations of coccolithophore populations from microscopy and flow cytometry, surface current data derived from high‐frequency radar, and satellite ocean color imagery were used to track the population dynamics of the bloom in the Santa Barbara Channel. Results show a coastal bloom of mostlyE. huxleyithat reached cell concentrations up to 5.7 × 106cells per liter and a maximum spatial extent of 1,220 km2. We speculate that the rare cooccurrence of warm water, high water column stability, and an extensive preceding diatom bloom during the anomaly contributed to the development of this bloom. Flow cytometry measurements provided insight on the phases of bloom development (e.g., growth versus senescence) with calcified cells comprising up to 64% of particles containing chlorophyll a and detached‐coccolith:cell ratios ranging from 10 to >100. Lagrangian particle trajectories estimated during two nonoverlapping 48‐ and 72‐hr periods showed the changes in the surface structure of the bloom due to advection by surface currents and nonconservative biological and physical processes. Time rates of change of particulate inorganic carbon were estimated along particle trajectories, with rates ranging from −4 to 6 μmol·L−1·day−1. The approach presented here is likely to be useful for understanding the evolution of coastal phytoplankton bloom events in a general setting.

     
    more » « less
  3. Abstract Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improvements. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accuracy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial coverage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained by HF radars operating in complex current environments. Significance Statement We identify and test a method based on the likelihood ratio (LR) for determining the number of signal sources in observations subject to direction finding with maximum likelihood estimation (MLE). Direction-finding methods are used in broad-ranging applications that include radar, sonar, and wireless communication. Previous work suggests accuracy improvements when using MLE, but suitable methods for determining the number of simultaneous signal sources are not well known. Our work shows that the LR, when combined with MLE, performs at least as well as alternative methods when applied to oceanographic high-frequency (HF) radars. In some situations, MLE and LR obtain superior resolution, where resolution is defined as the ability to distinguish closely spaced signal sources. 
    more » « less