Abstract Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improvements. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accuracy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial coverage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained by HF radars operating in complex current environments. Significance Statement We identify and test a method based on the likelihood ratio (LR) for determining the number of signal sources in observations subject to direction finding with maximum likelihood estimation (MLE). Direction-finding methods are used in broad-ranging applications that include radar, sonar, and wireless communication. Previous work suggests accuracy improvements when using MLE, but suitable methods for determining the number of simultaneous signal sources are not well known. Our work shows that the LR, when combined with MLE, performs at least as well as alternative methods when applied to oceanographic high-frequency (HF) radars. In some situations, MLE and LR obtain superior resolution, where resolution is defined as the ability to distinguish closely spaced signal sources.
more »
« less
Improving Surface Current Resolution Using Direction Finding Algorithms for Multiantenna High-Frequency Radars
Abstract While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.
more »
« less
- PAR ID:
- 10121038
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 36
- Issue:
- 10
- ISSN:
- 0739-0572
- Page Range / eLocation ID:
- p. 1997-2014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Using millimeter wave (mmWave) signals for imaging has an important advantage in that they can penetrate through poor environmental conditions such as fog, dust, and smoke that severely degrade optical-based imaging systems. However, mmWave radars, contrary to cameras and LiDARs, suffer from low angular resolution because of small physical apertures and conventional signal processing techniques. Sparse radar imaging, on the other hand, can increase the aperture size while minimizing the power consumption and read out bandwidth. This paper presents CoIR, an analysis by synthesis method that leverages the implicit neural network bias in convolutional decoders and compressed sensing to perform high accuracy sparse radar imaging. The proposed system is data set-agnostic and does not require any auxiliary sensors for training or testing. We introduce a sparse array design that allows for a 5.5× reduction in the number of antenna elements needed compared to conventional MIMO array designs. We demonstrate our system's improved imaging performance over standard mmWave radars and other competitive untrained methods on both simulated and experimental mmWave radar data.more » « less
-
null (Ed.)Emerging autonomous driving systems require reliable perception of 3D surroundings. Unfortunately, current mainstream perception modalities, i.e., camera and Lidar, are vulnerable under challenging lighting and weather conditions. On the other hand, despite their all-weather operations, today's vehicle Radars are limited to location and speed detection. In this paper, we introduce MILLIPOINT, a practical system that advances the Radar sensing capability to generate 3D point clouds. The key design principle of MILLIPOINT lies in enabling synthetic aperture radar (SAR) imaging on low-cost commodity vehicle Radars. To this end, MILLIPOINT models the relation between signal variations and Radar movement, and enables self-tracking of Radar at wavelength-scale precision, thus realize coherent spatial sampling. Furthermore, MILLIPOINT solves the unique problem of specular reflection, by properly focusing on the targets with post-imaging processing. It also exploits the Radar's built-in antenna array to estimate the height of reflecting points, and eventually generate 3D point clouds. We have implemented MILLIPOINT on a commodity vehicle Radar. Our evaluation results show that MILLIPOINT effectively combats motion errors and specular reflections, and can construct 3D point clouds with much higher density and resolution compared with the existing vehicle Radar solutions.more » « less
-
Abstract. Part I of this history describes the motivations for developing radars in the high frequency (HF) band to study plasma density irregularities in the F region of the auroral zone and polar cap ionospheres. French and Swedish scientists were the first to use HF frequencies to study the Doppler velocities of HF radar backscatter from F-region plasma density irregularities over northern Sweden. These observations encouraged the author of this paper to pursue similar measurements over northeastern Alaska, and this eventually led to the construction of a large HF-phased-array radar at Goose Bay, Labrador, Canada. This radar utilized frequencies from 8–20 MHz and could be electronically steered over 16 beam directions, covering a 52∘ azimuth sector. Subsequently, similar radars were constructed at Schefferville, Quebec, and Halley Station, Antarctica. Observations with these radars showed that F-region backscatter often exhibited Doppler velocities that were significantly above and below the ion-acoustic velocity. This distinguished HF Doppler measurements from prior measurements of E-region irregularities that were obtained with radars operating at very high frequency (VHF) and ultra-high frequency (UHF). Results obtained with these early HF radars are also presented. They include comparisons of Doppler velocities observed with HF radars and incoherent scatter radars, comparisons of plasma convection patterns observed simultaneously in conjugate hemispheres, and the response of these patterns to changes in the interplanetary magnetic field, transient velocity enhancements in the dayside cusp, preferred frequencies for geomagnetic pulsations, and observations of medium-scale atmospheric gravity waves with HF radars.more » « less
-
Abstract This paper provides an update and overview of the Center for Remote Sensing of Ice Sheets (CReSIS) radars and platforms, including representative results from these systems. CReSIS radar systems operate over a frequency range of 14–38 GHz. Each radar system's specific frequency band is driven by the required depth of signal penetration, measurement resolution, allocated frequency spectra, and antenna operating frequencies (often influenced by aircraft integration). We also highlight recent system advancements and future work, including (1) increasing system bandwidth; (2) miniaturizing radar hardware; and (3) increasing sensitivity. For platform development, we are developing smaller, easier to operate and less expensive unmanned aerial systems. Next-generation platforms will further expand accessibility to scientists with vertical takeoff and landing capabilities.more » « less
An official website of the United States government
