skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1659134

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Virtual Learning Environments (VLEs) are spaces designed to educate students remotely via online platforms. Although traditional VLEs such as iSocial have shown promise in educating students, they offer limited immersion that diminishes learning effectiveness. This paper outlines a virtual reality learning environment (VRLE) over a high-speed network, which promotes educational effectiveness and efficiency via our creation of flexible content and infrastructure which meet established VLE standards with improved immersion. This paper further describes our implementation of multiple learning modules developed in High Fidelity, a "social VR" platform. Our experiment results show that the VR mode of content delivery better stimulates the generalization of lessons to the real world than non-VR lessons and provides improved immersion when compared to an equivalent desktop version 
    more » « less
  2. In recent studies, researchers have developed various computation offloading frameworks for bringing cloud services closer to the user via edge networks. Specifically, an edge device needs to offload computationally intensive tasks because of energy and processing constraints. These constraints present the challenge of identifying which edge nodes should receive tasks to reduce overall resource consumption. We propose a unique solution to this problem which incorporates elements from Knowledge-Defined Networking (KDN) to make intelligent predictions about offloading costs based on historical data. Each server instance can be represented in a multidimensional feature space where each dimension corresponds to a predicted metric. We compute features for a "hyperprofile" and position nodes based on the predicted costs of offloading a particular task. We then perform a k-Nearest Neighbor (kNN) query within the hyperprofile to select nodes for offloading computation. This paper formalizes our hyperprofile-based solution and explores the viability of using machine learning (ML) techniques to predict metrics useful for computation offloading. We also investigate the effects of using different distance metrics for the queries. Our results show various network metrics can be modeled accurately with regression, and there are circumstances where kNN queries using Euclidean distance as opposed to rectilinear distance is more favorable. 
    more » « less