skip to main content


Title: Towards a social virtual reality learning environment in high fidelity
Virtual Learning Environments (VLEs) are spaces designed to educate students remotely via online platforms. Although traditional VLEs such as iSocial have shown promise in educating students, they offer limited immersion that diminishes learning effectiveness. This paper outlines a virtual reality learning environment (VRLE) over a high-speed network, which promotes educational effectiveness and efficiency via our creation of flexible content and infrastructure which meet established VLE standards with improved immersion. This paper further describes our implementation of multiple learning modules developed in High Fidelity, a "social VR" platform. Our experiment results show that the VR mode of content delivery better stimulates the generalization of lessons to the real world than non-VR lessons and provides improved immersion when compared to an equivalent desktop version  more » « less
Award ID(s):
1647213 1659134
NSF-PAR ID:
10091392
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Consumer Communications & Networking Conference
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for the VR laboratory experience, and to identify possible technical constraints pertaining to the specific laboratory exercise. During stage II, the environment (the world) the player (user) will experience is designed, along with the foundational elements, such as ways of navigation, key actions, and immersion elements. During stage III, the software is generated as part of the course projects for the Virtual Reality course taught in the Computer Science Department at the same university, or as part of independent research projects involving engineering students. This reflects the strong educational impact of this project, as it allows students to contribute to the educational experiences of their peers. During phase IV, the VR experiences are played by different types of audiences that fit the player type. The team collects feedback and if needed, implements changes. The pilot VR Lab, introduced as an additional instructional tool for the E&M course during the Fall 2019, engaged over 100 students in the program, where in addition to the regular lectures, students attended one hour per week in the E&M VR lab. Student competencies around conceptual understanding of electromagnetism topics are measured via formative and summative assessments. To evaluate the effectiveness of VR learning, each lab is followed by a 10-minute multiple-choice test, designed to measure conceptual understanding of the various topics, rather than the ability to simply manipulate equations. This paper discusses the implementation and the pedagogy of the Virtual Reality laboratory experiences to visualize concepts in E&M, with examples for specific labs, as well as challenges, and student feedback with the new approach. We will also discuss the integration of the 3D visualizations into lab exercises, and the design of the student assessment tools used to assess the knowledge gain when the VR technology is employed. 
    more » « less
  2. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to support the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. The Department is cultivating this culture of “engineering with engineers” through a strong connection to industry, and through changes in the four essential areas of, a shared department vision, faculty, curriculum and supportive policies. This paper reports our continued efforts in these four areas and our measurement of their impact. Shared department vision: During the first year of the project, the department worked together to revise its mission to reflect the goal of fostering engineering identity. From this shared vision, the department aims to build a culture to promote inclusive practices. In the past year during the COVID-19 pandemic, this shared vision continued to guide many acts of care and community building for the department. Faculty: The pandemic prompted faculty to reflect on how they delivered their courses and cared for students. To promote inclusive practice, faculty utilized recorded lectures, online collaboration tools and instant messaging apps to provide multiple ways of communication for students. Although faculty summer immersion had to be postponed due to pandemic, interactions with industry continued in design courses, and via virtual seminars and socials. Efforts were also extended to strengthen connections between the department and recent graduates who just began working in industry and could become mentors for current students. Curriculum: A new curriculum to support the goals of this project was rolled out in the 2019-20 academic year. The pandemic hit right in the middle of the initial implementation of this new curriculum. Therefore, to maintain the essence of the new curriculum that emphasizes hands-on, doing engineering and experiential learning in the remote setting, many adjustments and modifications were made. Although initial evidence indicates the effectiveness of the new courses/curriculum even under remote teaching and learning, there are also many lessons-learned that can be examined for future implementations and modifications of the curriculum. Supportive policies: The department agreed to celebrate various acts of care for students and cares for teaching and learning in Annual Performance Reviews. Faculty also worked with other departments, the college, and the university to develop supportive policies beyond the department. For example, based on the recommendation from the department, the college set up a Student Advocate role who would assist students navigate through any incident that make they feel excluded. The new university tenure and promotion guidelines have just been approved with the support from the faculty in the department. Additionally, the department’s effort of building an inclusive culture is aligned with the university initiative for a reform to emphasize anti-racism curriculum. Details of the action items in each area of change that the department has taken to build this inclusive culture to foster engineering identity are shared in this paper. In addition, research gauging the impact of our efforts are discussed. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF. 
    more » « less
  3. Storytelling has been established as a proven method to effectively communicate and assist in knowledge transfer. In recent years, there has been growing interest in improving the training and learning domain by using advanced technology such as Virtual Reality (VR). However, a gap exists between storytelling and VR, and it is as yet unclear how they can be combined to form an effective system that not only maintains the level of engagement and immersion provided by VR technology but also provides the core strengths of storytelling. In this paper, we present vIS, a Vocational Immersive Storytelling system, which bridges the gap between storytelling and VR. vIS focuses on vocational training, in which users are trained on how to use a mechanical micrometer by employing a creative fictional story embedded inside a virtual manufacturing plant’s workplace. For the evaluation, a two-phase user study with 30 participants was conducted to measure the system’s effectiveness and improvements in long-term training, as well as to examine user experience against traditional methods of training—2D videos and textual manuals. The results indicate that the user’s ability to retain their training after seven days was nearly equal for vIS and the 2D video-based technique and was considerably higher than the text-based technique.

     
    more » « less
  4. Virtual reality (VR) has a high potential to facilitate education. However, the design of many VR learning applications was criticized for lacking the guidance of explicit and appropriate learning theories. To advance the use of VR in effective instruction, this study proposed a model that extended the cognitive-affective theory of learning with media (CATLM) into a VR learning context and evaluated this model using a structural equation modeling (SEM) approach. Undergraduate students ( n = 77) learned about the solar system in a VR environment over three sessions. Overall, the results supported the core principles and assumptions of CATLM in a VR context (CATLM-VR). In addition, the CATLM-VR model illustrated how immersive VR may impact learning. Specifically, immersion had an overall positive impact on user experience and motivation. However, the impact of immersion on cognitive load was uncertain, and that uncertainty made the final learning outcomes less predictable. Enhancing students’ motivation and cognitive engagement may more directly increase learning achievement than increasing the level of immersion and may be more universally applicable in VR instruction. 
    more » « less
  5. The goal of this study was to evaluate driver risk behavior in response to changes in their risk perception inputs, specifically focusing on the effect of augmented visual representation technologies. This experiment was conducted for the purely real-driving scenario, establishing a baseline by which future, augmented visual representation scenarios can be compared. Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) simulation technologies have rapidly improved over the last three decades to where, today, they are widely used and more heavily relied upon than before, particularly in the areas of training, research, and design. The resulting utilization of these capabilities has proven simulation technologies to be a versatile and powerful tool. Virtual immersion, however, introduces a layer of abstraction and safety between the participant and the designed artifact, which includes an associated risk compensation. Quantifying and modeling the relationship between this risk compensation and levels of virtual immersion is the greater goal of this project. This study focuses on the first step, which is to determine the level of risk perception for a purely real environment for a specific man-machine system - a ground vehicle – operated in a common risk scenario – traversing a curve at high speeds. Specifically, passengers are asked to assess whether the vehicle speed within a constant-radius curve is perceived as comfortable. Due to the potential for learning effects to influence risk perception, the experiment was split into two separate protocols: the latent response protocol and the learned response protocol. The latent response protocol applied to the first exposure of an experimental condition to the subject. It consisted of having the subjects in the passenger seat assess comfort or discomfort within a vehicle that was driven around a curve at a randomlychosen value among a selection of test speeds; subjects were asked to indicate when they felt uncomfortable by pressing a brake pedal that was instrumented to alert the driver. Next, the learned response protocol assessed the subjects for repeated exposures but allowing subjects to use brake and throttle pedals to indicate if they wanted to go faster or slower; the goal was to allow subjects to iterate toward their maximum comfortable speed. These pedals were instrumented to alert the driver who responded accordingly. Both protocols were repeated for a second curve with a different radius. Questionnaires were also administered after each trial that addressed the subjective perception of risk and provided a means to substantiate the measured risk compensation behavior. The results showed that, as expected, the latent perception of risk for a passenger traversing a curve was higher than the learned perception for successive exposures to the same curve; in other words, as drivers ‘learned’ a curve, they were more comfortable with higher speeds. Both the latent and learned speeds provide a suitable metric by which to compare future replications of this experiment at different levels of virtual immersion. Correlations were found between uncomfortable subject responses and the yaw acceleration of the vehicle. Additional correlation of driver discomfort was found to occur at specific locations on the curves. The yaw acceleration is a reflection of the driver’s ability to maintain a steady steering input, whereas the location on the curve was found to correlate with variations in the lane-markings and environmental cues. 
    more » « less