skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1660005

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ecological observations and paleontological data show that communities of organisms recur in space and time. Various observations suggest that communities largely disappear in extinction events and appear during radiations. This hypothesis, however, has not been tested on a large scale due to a lack of methods for analyzing fossil data, identifying communities, and quantifying their turnover. We demonstrate an approach for quantifying turnover of communities over the Phanerozoic Eon. Using network analysis of fossil occurrence data, we provide the first estimates of appearance and disappearance rates for marine animal paleocommunities in the 100 stages of the Phanerozoic record. Our analysis of 124,605 fossil collections (representing 25,749 living and extinct marine animal genera) shows that paleocommunity disappearance and appearance rates are generally highest in mass extinctions and recovery intervals, respectively, with rates three times greater than background levels. Although taxonomic change is, in general, a fair predictor of ecologic reorganization, the variance is high, and ecologic and taxonomic changes were episodically decoupled at times in the past. Extinction rate, therefore, is an imperfect proxy for ecologic change. The paleocommunity turnover rates suggest that efforts to assess the ecological consequences of the present-day biodiversity crisis should focus on the selectivity of extinctions and changes in the prevalence of biological interactions. 
    more » « less
  2. Abstract Konservat-Lagerstätten—deposits with exceptionally preserved fossils—vary in abundance across geographic and stratigraphic space due to paleoenvironmental heterogeneity. While oceanic anoxic events (OAEs) may have promoted preservation of marine lagerstätten, the environmental controls on their taphonomy remain unclear. Here, we provide new data on the mineralization of fossils in three Lower Jurassic Lagerstätten—Strawberry Bank (UK), Ya Ha Tinda (Canada), and Posidonia Shale (Germany) —and test the hypothesis that they were preserved under similar conditions. Biostratigraphy indicates that all three Lagerstätten were deposited during the Toarcian OAE (TOAE), and scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) show that each deposit contains a variety of taxa preserved as phosphatized skeletons and tissues. Thus, despite their geographic and paleoenvironmental differences, all of these Lagerstätten were deposited in settings conducive to phosphatization, indicating that the TOAE fostered exceptional preservation in marine settings around the world. Phosphatization may have been fueled by phosphate delivery from climatically-driven sea level change and continental weathering, with anoxic basins acting as phosphorus traps. 
    more » « less
  3. {"Abstract":["Supplemental Dataset for Muscente et al. in Geology "Appearance and disappearance rates of Phanerozoic marine animal paleocommunities"."]} 
    more » « less
  4. Incorporating games in teaching can help students retain material and become innovative problem solvers through engagement and enjoyment. Here we describe a new board game, “Taphonomy: Dead and Fossilized,” and its use as an active learning tool (material available at doi: 10.18738/T8/NQV2CU). The educational objective is to teach the player about taphonomy and fossilization, while the gameplay objective is to preserve and recover the best fossil collection. Through competitive gameplay, students learn how chemical, physical, and environmental factors, as well as physiology and discovery biases can influence an organism’s preservation and collection potential. The game is modeled after an Early Jurassic fossil deposit for scientific accuracy and relevance. The game was incorporated in undergraduate classroom activities in 20 colleges and universities across the United States. Survey results show that students and teachers were overwhelmingly positive about the game, stating that it was fun and helped them learn or strengthen their knowledge of fossilization. When analyzed statistically, we find that students’ self-reported learning outcomes and opinions vary most significantly with college year, major, ethnicity, and race. White students and geoscience or STEM majors reported the highest levels of learning and enjoyment, with minorities and non-STEM majors responding less favorably. We suggest this game is most advantageous for use in upper-level paleontology classrooms, although it is still beneficial at lower levels. It is critical to use this game as part of a larger lesson plan and tailor it to fit the needs of an individual classroom. Modifications for time and class size, as well as follow-up discussion questions, are included. 
    more » « less
  5. ABSTRACT Konservat-Lagerstätten provide the most complete snapshots of ancient organisms and communities in the fossil record. In the Mesozoic, these deposits are rarely found in marine facies outside Oceanic Anoxic Event (OAE) intervals, suggesting that OAEs set the stage for exceptional fossil preservation. Although anoxia does not guarantee survival of non-biomineralized tissues or articulated skeletons, other OAE phenomena may promote their conservation. Here, we test this hypothesis with a taphonomic analysis of the Konservat-Lagerstätte in the black shales and siltstones of the Jurassic Fernie Formation at Ya Ha Tinda (Alberta, Canada). This deposit contains crustacean cuticles, coleoid gladii with ink sacs and mantle tissues, and articulated skeletons of fish, crinoids, and ichthyosaurs. The fossils were preserved in the Pliensbachian and Toarcian (Early Jurassic) when euxinic conditions were common in the area, in part, due to the ∼183 Ma Toarcian OAE. Some of the fossils contain carbonaceous material, but the majority consists of apatite minerals, and phosphatic gladii demonstrate that some animals were preserved through secondary phosphate mineralization. Phosphatization generally occurs within phosphate-rich sediment, but oceanic anoxia causes sediment to release phosphorus and prevents animals from colonizing seafloor habitats. Accordingly, we propose that the animals were preserved during brief episodes of bottom water oxia and/or dysoxia, when the environment would have been most favorable to benthic communities and phosphate mineralization. In this setting, phosphatization may have been fueled by phosphate delivery from continental weathering in response to climatic warming, ocean upwelling of eutrophic water, and/or nutrient trapping by anoxia in the basin. 
    more » « less