skip to main content


Search for: All records

Award ID contains: 1662456

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Articular cartilage is a multiphasic, anisotropic, and heterogeneous material. Although cartilage possesses excellent mechanical and biological properties, it can undergo mechanical damage, resulting in osteoarthritis. Thus, it is important to understand the microscale failure behavior of cartilage in both basic science and clinical contexts. Determining cartilage failure behavior and mechanisms provides insight for improving treatment strategies to delay osteoarthritis initiation or progression and can also enhance the value of cartilage as bioinspiration for material fabrication. To investigate microscale failure behavior, we developed a protocol to initiate fractures by applying a microindentation technique using a well‐defined tip geometry that creates localized cracks across a range of loading rates. The protocol includes extracting the tissue from the joint, preparing samples, and microfracture. Various aspects of the experiment, such as loading profile and solvent, can be adjusted to mimic physiological or pathological conditions and thereby further clarify phenomena underlying articular cartilage failure. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Harvesting and dissection of the joint surfaces

    Basic Protocol 2: Preparation of samples for microindentation and fatigue testing

    Basic Protocol 3: Microfracture using microindentation

    Basic Protocol 4: Crack propagation under cyclic loading

     
    more » « less
  2. Abstract

    Articular cartilage heals poorly but experiences mechanically induced damage across a broad range of loading rates and matrix integrity. Because loading rates and matrix integrity affect cartilage mechanical responses due to poroviscoelastic relaxation mechanisms, their effects on cartilage failure are important for assessing and preventing failure. This paper investigated rate- and integrity-dependent crack nucleation in cartilage from pre- to post-relaxation timescales. Rate-dependent crack nucleation and relaxation responses were obtained as a function of matrix integrity through microindentation. Total work for crack nucleation increased with decreased matrix integrity, and with decreased loading rates. Critical energy release rate of intact cartilage was estimated as 2.39 ± 1.39 to 2.48 ± 1.26 kJ m−2in a pre-relaxation timescale. These findings showed that crack nucleation is delayed when cartilage can accommodate localized loading through poroviscoelastic relaxation mechanisms before fracture at a given loading rate and integrity state.

     
    more » « less
  3. Abstract In this paper, the nonlinear response of indenter–foam dampers is characterized. Those dampers consist of indenters pressed on open-cell foams swollen with wetting liquids. Recently, the authors identified the dominant mechanism of damping in those dampers as poro-viscoelastic (PVE) relaxations as in articular cartilage, one of nature’s best solutions to vibration attenuation. Those previous works by the authors included dynamic mechanical analyses of the indenter–foam dampers under small vibrations, i.e., linear regime. The current study features the dynamic response of similar dampers under larger strains to investigate the nonlinear regime. In particular, the indenter–foam dampers tested in this paper consist of an open-cell polyurethane foam swollen with castor oil. Harmonic displacements are applied on the swollen and pre-compressed foam using a flat-ended cylindrical indenter. Measured forces and corresponding hysteresis (force–displacement) loops are then analyzed to quantify damping performance (via specific damping capacity) and nonlinearities (via harmonic ratio). The effects of strain and strain rates on the damping capacity and harmonic ratio are investigated experimentally. The dominant source of the nonlinearity is identified as peeling at the indenter–foam interface (and quantified via peeling index). A representative model consisting of a linear viscoelastic foam and rate-dependent adhesive interface (slider element with limiting adhesive strength) explains the observed trends in peeling and thus nonlinear dynamic response. Possible remedies to suppress those nonlinearities in future designs of indenter–foam dampers are also discussed. 
    more » « less
  4. Abstract Articular cartilage is a thin layer of a solid matrix swollen by fluid, and it protects joints from damage via poroviscoelastic damping. Our previous experimental and simulation studies showed that cartilage-like poroviscoelastic damping could widen the range of damping methods in a low-frequency range (<100 Hz). Thus, the current study aimed to realize cartilage-like damping capacity by single- and two-indenter–foam poroviscoelastic dampers in a low-frequency range. Multiple single-indenter–foam dampers were designed by combining foam sheets with different pore diameters and indenters with different radii. Their damping capacity was investigated by dynamic mechanical analysis in a frequency range of 0.5–100 Hz. Single-indenter–foam dampers delivered peak damping frequencies that depended on the foam’s pore diameter and characteristic diffusion length (contact radii). Those dampers maximize the damping capacity at the desired frequency (narrowband performance). A mechanical model combined with simple scaling laws was shown to relate poroelasticity to the peak damping frequencies reasonably well. Finally, combinations of single-indenter–foam dampers were optimized to obtain a two-indenter–foam damper that delivered nearly rate-independent damping capacity within 0.5–100 Hz (broadband performance). These findings suggested that cartilage-like poroviscoelastic dampers can be an effective mean of passive damping for narrowband and broadband applications. 
    more » « less