skip to main content


Title: Contact Nonlinearity in Indenter–Foam Dampers
Abstract In this paper, the nonlinear response of indenter–foam dampers is characterized. Those dampers consist of indenters pressed on open-cell foams swollen with wetting liquids. Recently, the authors identified the dominant mechanism of damping in those dampers as poro-viscoelastic (PVE) relaxations as in articular cartilage, one of nature’s best solutions to vibration attenuation. Those previous works by the authors included dynamic mechanical analyses of the indenter–foam dampers under small vibrations, i.e., linear regime. The current study features the dynamic response of similar dampers under larger strains to investigate the nonlinear regime. In particular, the indenter–foam dampers tested in this paper consist of an open-cell polyurethane foam swollen with castor oil. Harmonic displacements are applied on the swollen and pre-compressed foam using a flat-ended cylindrical indenter. Measured forces and corresponding hysteresis (force–displacement) loops are then analyzed to quantify damping performance (via specific damping capacity) and nonlinearities (via harmonic ratio). The effects of strain and strain rates on the damping capacity and harmonic ratio are investigated experimentally. The dominant source of the nonlinearity is identified as peeling at the indenter–foam interface (and quantified via peeling index). A representative model consisting of a linear viscoelastic foam and rate-dependent adhesive interface (slider element with limiting adhesive strength) explains the observed trends in peeling and thus nonlinear dynamic response. Possible remedies to suppress those nonlinearities in future designs of indenter–foam dampers are also discussed.  more » « less
Award ID(s):
1826214 1662456
NSF-PAR ID:
10379082
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Vibration and Acoustics
Volume:
144
Issue:
5
ISSN:
1048-9002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Articular cartilage is a thin layer of a solid matrix swollen by fluid, and it protects joints from damage via poroviscoelastic damping. Our previous experimental and simulation studies showed that cartilage-like poroviscoelastic damping could widen the range of damping methods in a low-frequency range (<100 Hz). Thus, the current study aimed to realize cartilage-like damping capacity by single- and two-indenter–foam poroviscoelastic dampers in a low-frequency range. Multiple single-indenter–foam dampers were designed by combining foam sheets with different pore diameters and indenters with different radii. Their damping capacity was investigated by dynamic mechanical analysis in a frequency range of 0.5–100 Hz. Single-indenter–foam dampers delivered peak damping frequencies that depended on the foam’s pore diameter and characteristic diffusion length (contact radii). Those dampers maximize the damping capacity at the desired frequency (narrowband performance). A mechanical model combined with simple scaling laws was shown to relate poroelasticity to the peak damping frequencies reasonably well. Finally, combinations of single-indenter–foam dampers were optimized to obtain a two-indenter–foam damper that delivered nearly rate-independent damping capacity within 0.5–100 Hz (broadband performance). These findings suggested that cartilage-like poroviscoelastic dampers can be an effective mean of passive damping for narrowband and broadband applications. 
    more » « less
  2. Biomimetic scale-covered substrates are architected meta-structures exhibiting fascinating emergent nonlinearities via the geometry of collective scales contacts. Despite much progress in understanding their elastic nonlinearity, their dissipative behavior arising from scales sliding is relatively uninvestigated in the dynamic regime. Recently discovered is the phenomena of viscous emergence, where dry Coulomb friction between scales can lead to apparent viscous damping behavior of the overall multi-material substrate. In contrast to this structural dissipation, material dissipation common in many polymers has never been considered, especially synergistically with geometrical factors. This aspect is addressed here, where material viscoelasticity is introduced via a simple Kelvin–Voigt model for brevity and clarity. The results contrast the two damping sources in these architectured systems: material viscoelasticity and geometrical frictional scales contact. It is discovered that although topically similar in effective damping, viscoelastic damping follows a different damping envelope than dry friction, including starkly different effects on damping symmetry and specific damping capacity. 
    more » « less
  3. The chief objective of this paper is to explore energy transfer mechanism between the sub-systems that are coupled by a nonlinear elastic path. In the proposed model (via a minimal order, two degree of freedom system), both sub-systems are defined as damped harmonic oscillators with linear springs and dampers. The first sub-system is attached to the ground on one side but connected to the second sub-system on the other side. In addition, linear elastic and dissipative characteristics of both oscillators are assumed to be identical, and a harmonic force excitation is applied only on the mass element of second oscillator. The nonlinear spring (placed in between the two sub-systems) is assumed to exhibit cubic, hardening type nonlinearity. First, the governing equations of the two degree of freedom system with a nonlinear elastic path are obtained. Second, the nonlinear differential equations are solved with a semi-analytical (multi-term harmonic balance) method, and nonlinear frequency responses of the system are calculated for different path coupling cases. As such, the nonlinear path stiffness is gradually increased so that the stiffness ratio of nonlinear element to the linear element is 0.01, 0.05, 0.1, 0.5 and 1.0 while the absolute value of linear spring stiffness is kept intact. In all solutions, it is observed that the frequency response curves at the vicinity of resonant frequencies bend towards higher frequencies as expected due to the hardening effect. However, at moderate or higher levels of path coupling (say 0.1, 0.5 and 1.0), additional branches emerge in the frequency response curves but only at the first resonant frequency. This is due to higher displacement amplitudes at the first resonant frequency as compared to the second one. Even though the oscillators move in-phase around the first natural frequency, high amplitudes increase the contribution of the stored potential energy in the nonlinear spring to the total mechanical energy. The out-of-phase motion around the second natural frequency cannot significantly contribute due to very low motion amplitudes. Finally, the governing equations are numerically solved for the same levels of nonlinearity, and the motion responses of both sub-systems are calculated. Both in-phase and out-of-phase motion responses are successfully shown in numerical solutions, and phase portraits of the system are generated in order to illustrate its nonlinear dynamics. In conclusion, a better understanding of the effect of nonlinear elastic path on two damped harmonic oscillators is gained. 
    more » « less
  4. This article presents a utilization of viscoelastic damping to reduce control system complexity for strain-actuated solar array (SASA) based spacecraft attitude control systems (ACSs). SASA utilizes intelligent structures for attitude control, and is a promising next-generation spacecraft ACS technology with the potential to achieve unprecedented levels of pointing accuracy and jitter reduction during key scientific observation periods. The current state-of-the-art SASA implementation utilizes piecewise modeling of distributed piezoelectric (PZT) actuators, resulting in a monolithic structure with the potential for enhanced ACS reliability. PZT actuators can operate at high frequencies, which enables active vibration damping to achieve ultra-quiet operation for sensitive instruments. Relying on active damping alone, however, requires significant control system complexity, which has so far limited adoption of intelligent structures in spacecraft control systems. Here we seek to understand how to modify passive system design in strategic ways to reduce control system complexity while maintaining high performance. An integrated physical and control system design (codesign) optimization strategy is employed to ensure system-optimal performance, and to help understand design coupling between passive physical aspects of design and active control system design. In this study, we present the possibility of utilizing viscoelastic material distributed throughout the SASA substructure to provide tailored passive damping, intending to reduce control system complexity. At this early phase of study, the effect of temperature variation on material behavior is not considered; the study focuses instead on the design coupling between distributed material and control systems. The spatially-distributed design of both elastic and viscoelastic material in the SASA substructure is considered in an integrated manner. An approximate model is used that balances predictive accuracy and computational efficiency. This model approximates the distributed compliant SASA structure using a series of rigid links connected by generalized torsional springs and dampers. This multi-link pseudo-rigid-body dynamic model (PRBDM) with lumped viscoelastic damping models is derived, and is used in numerical co-design studies to quantify the tradeoffs and benefits of using distributed passive damping to reduce the complexity of SASA control systems. 
    more » « less
  5. Baek, Seungik (Ed.)

    Introduction:The right ventricle (RV) mechanical property is an important determinant of its function. However, compared to its elasticity, RV viscoelasticity is much less studied, and it remains unclear how pulmonary hypertension (PH) alters RV viscoelasticity. Our goal was to characterize the changes in RV free wall (RVFW) anisotropic viscoelastic properties with PH development and at varied heart rates.

    Methods:PH was induced in rats by monocrotaline treatment, and the RV function was quantified by echocardiography. After euthanasia, equibiaxial stress relaxation tests were performed on RVFWs from healthy and PH rats at various strain-rates and strain levels, which recapitulate physiological deformations at varied heart rates (at rest and under acute stress) and diastole phases (at early and late filling), respectively.

    Results and Discussion:We observed that PH increased RVFW viscoelasticity in both longitudinal (outflow tract) and circumferential directions. The tissue anisotropy was pronounced for the diseased RVs, not healthy RVs. We also examined the relative change of viscosity to elasticity by the damping capacity (ratio of dissipated energy to total energy), and we found that PH decreased RVFW damping capacity in both directions. The RV viscoelasticity was also differently altered from resting to acute stress conditions between the groups—the damping capacity was decreased only in the circumferential direction for healthy RVs, but it was reduced in both directions for diseased RVs. Lastly, we found some correlations between the damping capacity and RV function indices and there was no correlation between elasticity or viscosity and RV function. Thus, the RV damping capacity may be a better indicator of RV function than elasticity or viscosity alone. These novel findings on RV dynamic mechanical properties offer deeper insights into the role of RV biomechanics in the adaptation of RV to chronic pressure overload and acute stress.

     
    more » « less