skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1663227

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Cyber–physical–social systems (CPSS) are physical devices that are embedded in human society and possess highly integrated functionalities of sensing, computing, communication, and control. CPSS rely on their intense collaboration and information sharing through networks to be functioning. In this paper, topology-informed network information dynamics models are proposed to characterize the evolution of information processing capabilities of CPSS nodes in networks. The models are based on a mesoscale probabilistic graph model, where the sensing and computing capabilities of the nodes are captured as the probabilities of correct predictions. A topology-informed vector autoregression model and a latent variable vector autoregression model are proposed to model the correlations between prediction capabilities of nodes as linear functional relationships. A hybrid Gaussian process regression model is also developed to capture both the nonlinear spatial and temporal correlations between nodes. The new information dynamics models are demonstrated and tested with a simulator of CPSS networks. The results show that the topological information of networks can improve the efficiency in constructing the time series models. The network topology also has influences on the prediction capabilities of CPSS. 
    more » « less
  2. null (Ed.)
    Abstract Cyber–physical–social systems (CPSS) with highly integrated functions of sensing, actuation, computation, and communication are becoming the mainstream consumer and commercial products. The performance of CPSS heavily relies on the information sharing between devices. Given the extensive data collection and sharing, security and privacy are of major concerns. Thus, one major challenge of designing those CPSS is how to incorporate the perception of trust in product and systems design. Recently, a trust quantification method was proposed to measure the trustworthiness of CPSS by quantitative metrics of ability, benevolence, and integrity. The CPSS network architecture can be optimized by choosing a subnet such that the trust metrics are maximized. The combinatorial network optimization problem, however, is computationally challenging. Most of the available global optimization algorithms for solving such problems are heuristic methods. In this paper, a surrogate-based discrete Bayesian optimization method is developed to perform network design, where the most trustworthy CPSS network with respect to a reference node is formed to collaborate and share information with. The applications of ability and benevolence metrics in design optimization of CPSS architecture are demonstrated. 
    more » « less
  3. null (Ed.)
    Compressed sensing (CS) as a new data acquisition technique has been applied to monitor manufacturing processes. With a few measurements, sparse coefficient vectors can be recovered by solving an inverse problem and original signals can be reconstructed. Dictionary learning methods have been developed and applied in combination with CS to improve the sparsity level of the recovered coefficient vectors. In this work, a physics-constrained dictionary learning approach is proposed to solve both of reconstruction and classification problems by optimizing measurement, basis, and classification matrices simultaneously with the considerations of the application-specific restrictions. It is applied in image acquisitions in selective laser melting (SLM). The proposed approach includes the optimization in two steps. In the first stage, with the basis matrix fixed, the measurement matrix is optimized by determining the pixel locations for sampling in each image. The optimized measurement matrix only includes one non-zero entry in each row. The optimization of pixel locations is solved based on a constrained FrameSense algorithm. In the second stage, with the measurement matrix fixed, the basis and classification matrices are optimized based on the K-SVD algorithm. With the optimized basis matrix, the coefficient vector can be recovered with CS. The original signal can be reconstructed by the linear combination of the basis matrix and the recovered coefficient vector. The original signal can also be classified to identify different machine states by the linear combination of the classification matrix and the coefficient vector. 
    more » « less
  4. null (Ed.)
    Cyber-physical-social systems (CPSS) are physical devices with highly integrated functions of sensing, computing, communication and control, and are seamlessly embedded in human society. The levels of intelligence and functions that CPSS can perform rely on their extensive collaboration and information sharing through networks. In this paper, information diffusion within CPSS networks is studied. Information dynamics models are proposed to characterize the evolution of information processing and decision making capabilities of individual CPSS nodes. The data-driven statistical models are based on a mesoscale probabilistic graph model, where the individual nodes' sensing and computing functions are represented as the probabilities of correct predictions, whereas the communication functions are represented as the probabilities of mutual influences between nodes. A copula dynamics model is proposed to explicitly capture the information dependency among individuals with joint prediction probabilities and estimated from extremal probabilities. A topology-informed vector autoregression model is proposed to represent the mutual influence of prediction capabilities. A spatial-temporal hybrid Gaussian process regression model is also proposed to simultaneously capture correlations between nodes and temporal correlation in the time series. 
    more » « less
  5. null (Ed.)
    Cyber-physical-social systems (CPSS) with highly integrated functions of sensing, actuation, computation, and communication are becoming the mainstream consumer and commercial products. The performance of CPSS heavily relies on the information sharing between devices. Given the extensive data collection and sharing, security and privacy are of major concerns. Thus one major challenge of designing those CPSS is how to incorporate the perception of trust in product and systems design. Recently a trust quantification method was proposed to measure trustworthiness of CPSS by quantitative metrics of ability, benevolence, and integrity. In this paper, the applications of ability and benevolence metrics in design optimization of CPSS architecture are demonstrated. A Bayesian optimization method is developed to perform trust based CPSS network design, where the most trustworthy network with respect to a reference node can be selected to collaborate and share information with. 
    more » « less
  6. Molecular dynamics at the atomistic scale is increasingly being used to predict material properties and speed up the materials design and development process. However, the accuracy of molecular dynamics predictions is sensitively dependent on the force fields. In the traditional force field calibration process, a specific property, predicted by the model, is compared with the experimental observation and the force field parameters are adjusted to minimize the difference. This leads to the issue that the calibrated force fields are not generic and robust enough to predict different properties. Here, a new calibration method based on multi-objective Bayesian optimization is developed to speed up the development of molecular dynamics force fields that are capable of predicting multiple properties accurately. This is achieved by reducing the number of simulation runs to generate the Pareto front with an efficient sequential sampling strategy. The methodology is demonstrated by generating a new coarse-grained force field for polycaprolactone, where the force field can predict mechanical properties and water diffusion in the polymer. 
    more » « less
  7. null (Ed.)
    Cyber-physical systems (CPS) are physical devices with highly integrated functionalities of sensing, computing, communication, and control. The levels of intelligence and functions that CPS can perform heavily rely on their intense collaboration and information sharing through networks. In this paper, the information propagation within CPS networks is studied. Information dynamics models are proposed to characterize the evolution of information processing capabilities of CPS nodes in networks. The models are based on a mesoscale probabilistic graph model, where the sensing and computing functions of CPS nodes are captured as the probabilities of correct predictions, whereas the communication functions are represented as the probabilities of mutual influences between nodes. In the proposed copula dynamics model, the information dependency among individuals is represented with joint prediction probabilities and estimated from copulas of extremal probabilities. In the proposed functional interdependency model, the correlations between prediction capabilities are captured with their functional relationships. A data-driven approach is taken to train the parameters of the information dynamics models with data from simulations. The information dynamics models are demonstrated with a simulator of CPS networks. 
    more » « less