null
                            (Ed.)
                        
                    
            
                            Cyber-physical systems (CPS) are physical devices with highly integrated functionalities of sensing, computing, communication, and control. The levels of intelligence and functions that CPS can perform heavily rely on their intense collaboration and information sharing through networks. In this paper, the information propagation within CPS networks is studied. Information dynamics models are proposed to characterize the evolution of information processing capabilities of CPS nodes in networks. The models are based on a mesoscale probabilistic graph model, where the sensing and computing functions of CPS nodes are captured as the probabilities of correct predictions, whereas the communication functions are represented as the probabilities of mutual influences between nodes. In the proposed copula dynamics model, the information dependency among individuals is represented with joint prediction probabilities and estimated from copulas of extremal probabilities. In the proposed functional interdependency model, the correlations between prediction capabilities are captured with their functional relationships. A data-driven approach is taken to train the parameters of the information dynamics models with data from simulations. The information dynamics models are demonstrated with a simulator of CPS networks. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    