skip to main content

Search for: All records

Award ID contains: 1663287

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The microstructures of materials typically undergo significant changes during shock loading, causing failure when higher shock pressures are reached. However, preservation of microstructural and mechanical integrity during shock loading are essential in situations such as space travel, nuclear energy, protection systems, extreme geological events, and transportation. Here, we report ex situ shock behavior of a chemically optimized and microstructurally stable, bulk nanocrystalline copper–tantalum alloy that shows a relatively unchanged microstructure or properties when shock compressed up to 15 GPa. The absence of shock-hardening indicates that the grains and grain boundaries that make up the stabilized nanocrystalline microstructure act as stable sinks, thereby annihilating deformation-induced defects during shock loading. This study helps to advance the possibility of developing advanced structural materials for extreme applications where shock loading occurs.

    more » « less
  2. Abstract

    Fundamentally, material flow stress increases exponentially at deformation rates exceeding, typically, ~103 s−1, resulting in brittle failure. The origin of such behavior derives from the dislocation motion causing non-Arrhenius deformation at higher strain rates due to drag forces from phonon interactions. Here, we discover that this assumption is prevented from manifesting when microstructural length is stabilized at an extremely fine size (nanoscale regime). This divergent strain-rate-insensitive behavior is attributed to a unique microstructure that alters the average dislocation velocity, and distance traveled, preventing/delaying dislocation interaction with phonons until higher strain rates than observed in known systems; thus enabling constant flow-stress response even at extreme conditions. Previously, these extreme loading conditions were unattainable in nanocrystalline materials due to thermal and mechanical instability of their microstructures; thus, these anomalies have never been observed in any other material. Finally, the unique stability leads to high-temperature strength maintained up to 80% of the melting point (~1356 K).

    more » « less
  3. null (Ed.)
  4. null (Ed.)