skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1663773

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interfacial thermal conductance from solvated gold nanostructures capped with sodium citrate was determined using reverse nonequilibrium molecular dynamics (RNEMD) methods. The surfaces of spherical nanoparticles and the (111) surfaces of fcc gold slabs were modeled using the density readjusting-embedded atom method (DR-EAM) as well as with the standard embedded atom method (EAM), and the effects of polarizability on the binding preferences of citrate were determined. We find that the binding configurations of citrate depend significantly on gold surface curvature and are not strongly influenced by surface polarizability. The interfacial thermal conductance was also determined for the spherical nanoparticles and (111) surfaces, and we find that applying DR-EAM increases the interfacial thermal conductance for systems with spherical nanoparticles much more sharply than for systems with (111) surfaces. Through analysis of excess charge density near the interface, we find that inclusion of polarizability has a larger impact on image charge creation in nanospheres than it does for the planar (111) interfaces. This effectively increases the interaction strength to polar species in the solvent, yielding larger interfacial thermal conductance estimates for the nanospheres. 
    more » « less
  2. null (Ed.)