skip to main content

This content will become publicly available on January 1, 2023

Title: Thermal Transport in Citrate-Capped Gold Interfaces Using a Polarizable Force Field
The interfacial thermal conductance from solvated gold nanostructures capped with sodium citrate was determined using reverse nonequilibrium molecular dynamics (RNEMD) methods. The surfaces of spherical nanoparticles and the (111) surfaces of fcc gold slabs were modeled using the density readjusting-embedded atom method (DR-EAM) as well as with the standard embedded atom method (EAM), and the effects of polarizability on the binding preferences of citrate were determined. We find that the binding configurations of citrate depend significantly on gold surface curvature and are not strongly influenced by surface polarizability. The interfacial thermal conductance was also determined for the spherical nanoparticles and (111) surfaces, and we find that applying DR-EAM increases the interfacial thermal conductance for systems with spherical nanoparticles much more sharply than for systems with (111) surfaces. Through analysis of excess charge density near the interface, we find that inclusion of polarizability has a larger impact on image charge creation in nanospheres than it does for the planar (111) interfaces. This effectively increases the interaction strength to polar species in the solvent, yielding larger interfacial thermal conductance estimates for the nanospheres.
Award ID(s):
1954648 1663773
Publication Date:
Journal Name:
The Journal of Physical Chemistry C
Sponsoring Org:
National Science Foundation
More Like this
  1. The molecular features that dictate interactions between functionalized nanoparticles and biomolecules are not well understood. This is in part because for highly charged nanoparticles in solution, establishing a clear connection between the molecular features of surface ligands and common experimental observables such as ζ potential requires going beyond the classical models based on continuum and mean field models. Motivated by these considerations, molecular dynamics simulations are used to probe the electrostatic properties of functionalized gold nanoparticles and their interaction with a charged peptide in salt solutions. Counterions are observed to screen the bare ligand charge to a significant degree evenmore »at the moderate salt concentration of 50 mM. As a result, the apparent charge density and ζ potential are largely insensitive to the bare ligand charge densities, which fall in the range of ligand densities typically measured experimentally for gold nanoparticles. While this screening effect was predicted by classical models such as the Manning condensation theory, the magnitudes of the apparent surface charge from microscopic simulations and mean-field models are significantly different. Moreover, our simulations found that the chemical features of the surface ligand ( e.g. , primary vs. quaternary amines, heterogeneous ligand lengths) modulate the interfacial ion and water distributions and therefore the interfacial potential. The importance of interfacial water is further highlighted by the observation that introducing a fraction of hydrophobic ligands enhances the strength of electrostatic binding of the charged peptide. Finally, the simulations highlight that the electric double layer is perturbed upon binding interactions. As a result, it is the bare charge density rather than the apparent charge density or ζ potential that better correlates with binding affinity of the nanoparticle to a charged peptide. Overall, our study highlights the importance of molecular features of the nanoparticle/water interface and underscores a set of design rules for the modulation of electrostatic driven interactions at nano/bio interfaces.« less
  2. Gold nanoparticles (AuNPs) are now being used in such areas as diagnostics, drug delivery, and biological sensing. In these applications, AuNPs are frequently exposed to biological fluids. These fluids contain many different proteins, any of which may interfere with the intended function of the nanoparticle. In this work, we examine the thermodynamic consequences of proteinnanoparticle binding using a combined spectroscopic and calorimetric approach. We monitored binding using UV-Vis spectroscopy, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Six proteins were studied based on their differing chemical properties, and both 15 nm and 30 nm citrate-coated AuNPs were investigated. Wemore »interpreted the UV-Vis data using two different models: the commonly-used Langmuir isotherm model and a more complex mass transport model. Both models can be used to determine Kd values for the 30 nm AuNP data; however, the mass transport model is more appropriate for 15 nm AuNPs. This is because, when fitting the Langmuir model, it is commonly assumed that most proteins are not surface-associated, and this assumption fails for 15 nm AuNPs. The DSC thermograms show two transitions for a globular protein adsorbed to a 15 nm AuNP: one high-temperature transition that is similar to global protein unfolding (68 C), and one low-temperature transition that may correspond to unfolding at the surface (56 C). Conversely, ITC experiments show no net heat of adsorption for GB3, even at high protein/AuNP concentrations. Together, the spectroscopic and calorimetric data suggest a complex, multi-step process for protein-nanoparticle adsorption. Moreover, for the proteins studied, both AuNP curvature and protein chemistry contribute to protein adsorption, with proteins generally binding more weakly to the larger nanoparticles. In the future, this work may lead to principles for improving the design of AuNPbased therapeutics and sensors.« less
  3. Chromium-doped SrTiO 3 nanocrystals of perovskite structure type and 45 nm (±15 nm) edge lengths were obtained by hydrothermal synthesis in water from titanium oxide, strontium hydroxide, and chromium( iii ) nitrate. According to XPS, the majority of the surface chromium (68.3%) is present in the 3+ state and the remainder (32.2%) in the 6+ state. Optical spectroscopy confirms a broad absorption at 2.3–2.9 eV from Cr(3+) dopant states, in addition to the 3.2 eV band edge of the SrTiO 3 host. After modification with Pt nanoparticles, Cr-doped SrTiO 3 nanocrystals catalyze photochemical H 2 evolution from aqueous methanol undermore »visible light illumination (>400 nm) and with an apparent quantum yield of 0.66% at 435 nm. According to surface photovoltage spectroscopy (SPS), Cr-doped SrTiO 3 nanocrystals deposited onto gold substrates are n-type and have an effective band gap of 1.75 eV. SPS and transient illumination experiments at 2.50 eV reveal an anomalous surface photovoltage that increases with prior light exposure to values of up to −6.3 V. This photovoltage is assigned to ferroelectric polarization of the material in the space charge layer at the Au/SrTiO 3 :Cr interface. The polarization is stable for 24 h in vacuum but disappears after 12 h when samples are stored in air. The electric polarizability of SrTiO 3 :Cr is confirmed when films are exposed to static electric fields (1.20 MV m −1 ) in a fixed capacitor configuration. The discovery of a ferroelectric effect in Cr-doped SrTiO 3 could be significant for the development of improved photocatalysts for the conversion of solar energy into fuel.« less
  4. Metal nanoparticles (NPs) tethered by synthetic polymers are of broad interest for self-assembly, nanomedicine and catalysis. The binding motifs in polymer ligands usually as the end functional groups of polymers are mostly limited to thiolates. Since the binding motif only represents a tiny fraction of many repeating units in polymers, its importance is often ignored. We herein report the uniqueness of polymeric N-heterocyclic carbene (NHC) ligands in providing oxidative stability and promoting the catalytic activity of noble metal NPs. Two “grafting to” methods were developed for polymer NHCs for pre-synthesized metal NPs in various solvents and with different sizes. Remarkably,more »imidazolium-terminated polystyrene can modify gold NPs (AuNPs) within 2 min while reaching a similar grafting density to polystyrene-thiol (SH) requiring 6 h modification. We demonstrate that polymer NHCs are extremely stable at high temperature in air. Interestingly, the binding motifs of polymer ligands dominate the catalytic activity of metal NPs. Polymer NHC modified metal NPs showed improved activity regardless of the surface crowdedness. In the case of AuNPs, AuNPs modified with polystyrene NHCs are approximately 5.2 times more active than citrate-capped ones and 22 times more active than those modified with polystyrene thiolates. In view of ligand-controlled catalytic properties of metal NPs, our results illustrate the importance of binding motifs that has been overlooked in the past.« less
  5. A facile methodology to prepare N-heterocyclic carbene (NHC)-terminated polymers as surface ligands to functionalize gold nanoparticles (AuNPs) is reported. Our method highlights a mild, aerobic synthesis of NHC-functionalized polymers and a simple ligand exchange approach towards surface modification of AuNPs prepared in aqueous solution. Two methods, including end-group functionalization of halogen-ended polymers from a conventional atom transfer radical polymerization (ATRP) and post-polymerization functionalization of imidazole-containing polymers using imidazole-containing ATRP initiator, have been investigated to prepare imidazolium-ended polymers. Using a one-step, oxygen and moisture tolerant procedure, the polymer–NHC–Cu( i ) species can be synthesized from imidazolium-ended polymers and readily bind tomore »citrate-capped AuNPs likely through transmetalation, yielding robust polymer-stabilized AuNPs. Our synthetic method significantly simplifies the preparation and use of polymer–NHC ligands for surface functionalization of metal NPs. Our methodology is general and potentially applicable to any polymers prepared by ATRP to functionalize metal NPs via NHC–metal coordination; therefore, it will likely broaden the applications of polymer–NHC ligands for metal nanoparticles in the fields of catalysis and nanomedicine.« less