skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1665122

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Herein, we reported an intermolecular asymmetric hydrative aldol reaction through vinyl‐gold intermediate under ambient conditions. This tandem alkyne hydration and sequential nucleophilic addition afforded a “base‐free” approach to β‐hydroxy amides with high efficiency (up to 95 % yields, >50 examples). Vinyl gold intermediate was applied as reactive nucleophile and Fe(acac)3was used as the critical co‐catalyst to prevent undesired protodeauration, allowing this transformation to proceed under mild conditions with good functional group tolerance and excellent stereoselectivity (>20 : 1 d.r. and up to 99 % ee). 
    more » « less
  2. Abstract A reverse‐binding‐selectivity between monovalent and divalent cations was observed for two different self‐assembly G16‐hexadecamer and G8‐octamer systems. The dissociation constant between G4‐quadruplex and monomer was calculated via VT‐1H NMR experiments. Quantitative energy profiles revealed entropy as the key factor for the weaker binding toward Ba2+compared with K+in the G8‐octamer system despite stronger ion‐dipole interactions. This study is the first direct comparison of the G4‐quartet binding affinity between mono and divalent cations and will benefit future applications of G‐quadruplex‐related research. Further competition experiments between the G8‐octamer and 18‐crown‐6 with K+demonstrated the potential of this G8system as a new potassium receptor. 
    more » « less
  3. Abstract Stereoselective thioallylation of alkynes under possible gold redox catalysis was accomplished with high efficiency (as low as 0.1 % catalyst loading, up to 99 % yield) and broad substrate scope (various alkynes, inter‐ and intramolecular fashion). The gold(I) catalyst acts as both a π‐acid for alkyne activation and a redox catalyst for AuI/IIIcoupling, whereas the sulfonium cation generated in situ functions as a mild oxidant. This novel methodology provides an exciting system for gold redox catalysis without the need for a strong oxidant. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    Systematic investigations were performed with various substituted groups at C8 purine and ribose. A series of isoG analogs, C8-phenyl substituted isoG were synthesized and applied for Cs + coordination. The structural proximity between purine and ribose limited pentaplex formation for C8-phenyl substituted isoG derivatives. Based on this observation, deoxy isoG derivative with modification on ribose ( tert -butyldimethylsilyl ether) was applied to assemble with the Cs + cation. Critical solvent (CDCl 3 and CD 3 CN) and anion (BPh 4 − , BARF − , and PF 6 − ) effects were revealed, leading to the controllable formation of various stable isoG pentaplexes, including singly charged decamer, doubly charged decamer, and 15-mer, etc. Finally, the X-ray crystal structure of [isoG 20 Cs 3 ] 3+ (BARF − ) 3 was successfully obtained, which is the first example of multiple-layer deoxy isoG binding with the Cs + cation, providing solid evidence of this new isoG ionophore beyond two-layer sandwich self-assembly. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)