skip to main content

Search for: All records

Award ID contains: 1700030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Whereas electron-phonon scattering relaxes the electron’s momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid.

  2. ABSTRACT Ce-based intermetallics are of interest due to the potential to study the interplay of localized magnetic moments and conduction electrons. Our work on Ce-based germanides led to the identification of a new homologous series An+1MnX3n+1 (A = rare earth, M = transition metal, X = tetrels, and n = 1–6). This work presents the single-crystal growth, structure determination, and anisotropic magnetic properties of the n = 4 member of the Cen+1ConGe3n+1 homologous series. Ce5Co4+xGe13−ySny consists of three Ce sites, three Co sites, seven Ge sites, and two Sn sites, and the crystal structure is best modeled in the orthorhombic space group Cmmm where a = 4.3031(8) Å, b = 45.608(13) Å, and c = 4.3264(8) Å, which is in close agreement with the previously reported Sn-free analog where a = 4.265(1) Å, b = 45.175(9) Å, and c = 4.293(3) Å. Anisotropic magnetic measurements show Kondo-like behavior and three magnetic transitions at 6, 4.9, and 2.4 K for Ce5Co4+xGe13−ySn
  3. Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground states. Chromium trihalides provided the first such example with a change of interlayer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer previously unknown ground states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the nonmagnetic ligand atoms (Cl, Br, I). We synthesize a three-halide series, CrCl 3 − x − y Br x I y , and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl 3 . First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of interlayer coupling in the bulk of CrCl 3 − x − y Br x I y crystals at the same field as in the exfoliation experiments.