skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1700314

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we consider discrete Schrödinger operators of the form, $$\begin{equation*} (Hu)(n) = u({n+1})+u({n-1})+V(n)u(n). \end{equation*}$$We view $$H$$ as a perturbation of the free operator $$H_0$$, where $$(H_0u)(n)= u({n+1})+u({n-1})$$. For $$H_0$$ (no perturbation), $$\sigma _{\textrm{ess}}(H_0)=\sigma _{\textrm{ac}}(H)=[-2,2]$$ and $$H_0$$ does not have eigenvalues embedded into $(-2,2)$. It is an interesting and important problem to identify the perturbation such that the operator $$H_0+V$$ has one eigenvalue (finitely many eigenvalues or countable eigenvalues) embedded into $(-2,2)$. We introduce the almost sign type potentials and develop the Prüfer transformation to address this problem, which leads to the following five results. 1: We obtain the sharp spectral transition for the existence of irrational type eigenvalues or rational type eigenvalues with even denominators.2: Suppose $$\limsup _{n\to \infty } n|V(n)|=a<\infty .$$ We obtain a lower/upper bound of $$a$$ such that $$H_0+V$$ has one rational type eigenvalue with odd denominator.3: We obtain the asymptotical behavior of embedded eigenvalues around the boundaries of $(-2,2)$.4: Given any finite set of points $$\{ E_j\}_{j=1}^N$$ in $(-2,2)$ with $$0\notin \{ E_j\}_{j=1}^N+\{ E_j\}_{j=1}^N$$, we construct the explicit potential $$V(n)=\frac{O(1)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}_{j=1}^N$$.5: Given any countable set of points $$\{ E_j\}$$ in $(-2,2)$ with $$0\notin \{ E_j\}+\{ E_j\}$$, and any function $h(n)>0$ going to infinity arbitrarily slowly, we construct the explicit potential $$|V(n)|\leq \frac{h(n)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}$$. 
    more » « less
  2. Let $$\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$$ and $$\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$$ , where $$p_{n}/q_{n}$$ is the continued fraction approximation to $$\unicode[STIX]{x1D6FC}$$ . Let $$(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$$ be the almost Mathieu operator on $$\ell ^{2}(\mathbb{Z})$$ , where $$\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$$ . Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170 (1) (2009), 303–342] conjectured that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ . In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ . 
    more » « less