skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Criteria for Embedded Eigenvalues for Discrete Schrödinger Operators
Abstract In this paper, we consider discrete Schrödinger operators of the form, $$\begin{equation*} (Hu)(n) = u({n+1})+u({n-1})+V(n)u(n). \end{equation*}$$We view $$H$$ as a perturbation of the free operator $$H_0$$, where $$(H_0u)(n)= u({n+1})+u({n-1})$$. For $$H_0$$ (no perturbation), $$\sigma _{\textrm{ess}}(H_0)=\sigma _{\textrm{ac}}(H)=[-2,2]$$ and $$H_0$$ does not have eigenvalues embedded into $(-2,2)$. It is an interesting and important problem to identify the perturbation such that the operator $$H_0+V$$ has one eigenvalue (finitely many eigenvalues or countable eigenvalues) embedded into $(-2,2)$. We introduce the almost sign type potentials and develop the Prüfer transformation to address this problem, which leads to the following five results. 1: We obtain the sharp spectral transition for the existence of irrational type eigenvalues or rational type eigenvalues with even denominators.2: Suppose $$\limsup _{n\to \infty } n|V(n)|=a<\infty .$$ We obtain a lower/upper bound of $$a$$ such that $$H_0+V$$ has one rational type eigenvalue with odd denominator.3: We obtain the asymptotical behavior of embedded eigenvalues around the boundaries of $(-2,2)$.4: Given any finite set of points $$\{ E_j\}_{j=1}^N$$ in $(-2,2)$ with $$0\notin \{ E_j\}_{j=1}^N+\{ E_j\}_{j=1}^N$$, we construct the explicit potential $$V(n)=\frac{O(1)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}_{j=1}^N$$.5: Given any countable set of points $$\{ E_j\}$$ in $(-2,2)$ with $$0\notin \{ E_j\}+\{ E_j\}$$, and any function $h(n)>0$ going to infinity arbitrarily slowly, we construct the explicit potential $$|V(n)|\leq \frac{h(n)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}$$.  more » « less
Award ID(s):
1700314
PAR ID:
10124265
Author(s) / Creator(s):
 
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Suppose that $$\Sigma ^{n}\subset \mathbb{S}^{n+1}$$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $$\lambda _{1}$$ of the induced Laplace–Beltrami operator on $$\Sigma $$ satisfies $$\lambda _{1} \geq \frac{n}{2}+ a_{n}(\Lambda ^{6} + b_{n})^{-1}$$, where $$a_{n}$$ and $$b_{n}$$ are explicit dimensional constants and $$\Lambda $$ is an upper bound for the length of the second fundamental form of $$\Sigma $$. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $$\lambda _{1} \geq \frac{n}{2}$$ without any further assumptions on $$\Sigma $$. 
    more » « less
  2. The classic graphical Cheeger inequalities state that if $$M$$ is an $$n\times n$$ \emph{symmetric} doubly stochastic matrix, then \[ \frac{1-\lambda_{2}(M)}{2}\leq\phi(M)\leq\sqrt{2\cdot(1-\lambda_{2}(M))} \] where $$\phi(M)=\min_{S\subseteq[n],|S|\leq n/2}\left(\frac{1}{|S|}\sum_{i\in S,j\not\in S}M_{i,j}\right)$$ is the edge expansion of $$M$$, and $$\lambda_{2}(M)$$ is the second largest eigenvalue of $$M$$. We study the relationship between $$\phi(A)$$ and the spectral gap $$1-\re\lambda_{2}(A)$$ for \emph{any} doubly stochastic matrix $$A$$ (not necessarily symmetric), where $$\lambda_{2}(A)$$ is a nontrivial eigenvalue of $$A$$ with maximum real part. Fiedler showed that the upper bound on $$\phi(A)$$ is unaffected, i.e., $$\phi(A)\leq\sqrt{2\cdot(1-\re\lambda_{2}(A))}$$. With regards to the lower bound on $$\phi(A)$$, there are known constructions with \[ \phi(A)\in\Theta\left(\frac{1-\re\lambda_{2}(A)}{\log n}\right), \] indicating that at least a mild dependence on $$n$$ is necessary to lower bound $$\phi(A)$$. In our first result, we provide an \emph{exponentially} better construction of $$n\times n$$ doubly stochastic matrices $$A_{n}$$, for which \[ \phi(A_{n})\leq\frac{1-\re\lambda_{2}(A_{n})}{\sqrt{n}}. \] In fact, \emph{all} nontrivial eigenvalues of our matrices are $$0$$, even though the matrices are highly \emph{nonexpanding}. We further show that this bound is in the correct range (up to the exponent of $$n$$), by showing that for any doubly stochastic matrix $$A$$, \[ \phi(A)\geq\frac{1-\re\lambda_{2}(A)}{35\cdot n}. \] As a consequence, unlike the symmetric case, there is a (necessary) loss of a factor of $$n^{\alpha}$ for $$\frac{1}{2}\leq\alpha\leq1$$ in lower bounding $$\phi$$ by the spectral gap in the nonsymmetric setting. Our second result extends these bounds to general matrices $$R$$ with nonnegative entries, to obtain a two-sided \emph{gapped} refinement of the Perron-Frobenius theorem. Recall from the Perron-Frobenius theorem that for such $$R$$, there is a nonnegative eigenvalue $$r$$ such that all eigenvalues of $$R$$ lie within the closed disk of radius $$r$$ about $$0$$. Further, if $$R$$ is irreducible, which means $$\phi(R)>0$$ (for suitably defined $$\phi$$), then $$r$$ is positive and all other eigenvalues lie within the \textit{open} disk, so (with eigenvalues sorted by real part), $$\re\lambda_{2}(R) 
    more » « less
  3. Let $$\Omega\subset\re^{n+1}$$, $$n\ge 2$$, be a 1-sided chord-arc domain, that is, a domain which satisfies interior Corkscrew and Harnack Chain conditions (these are respectively scale-invariant/quantitative versions of the openness and path-connectedness), and whose boundary $$\partial\Omega$$ is $$n$$-dimensional Ahlfors regular. Consider $$L_0$$ and $$L$$ two real symmetric divergence form elliptic operators and let $$\omega_{L_0}$$, $$\omega_L$$ be the associated elliptic measures. We show that if $$\omega_{L_0}\in A_\infty(\sigma)$$, where $$\sigma=H^n\lfloor_{\partial\Omega}$$, and $$L$$ is a perturbation of $$L_0$$ (in the sense that the discrepancy between $$L_0$$ and $$L$$ satisfies certain Carleson measure condition), then $$\omega_L\in A_\infty(\sigma)$$. Moreover, if $$L$$ is a sufficiently small perturbation of $$L_0$$, then one can preserve the reverse H√∂lder classes, that is, if for some $$1<\infty$$, one has $$\omega_{L_0}\in RH_p(\sigma)$$ then $$\omega_{L}\in RH_p(\sigma)$$. Equivalently, if the Dirichlet problem with data in $$L^{p'}(\sigma)$$ is solvable for $$L_0$$ then so it is for $$L$$. These results can be seen as extensions of the perturbation theorems obtained by Dahlberg, Fefferman-Kenig-Pipher, and Milakis-Pipher-Toro in more benign settings. As a consequence of our methods we can show that for any perturbation of the Laplacian (or, more in general, of any elliptic symmetric operator with Lipschitz coefficients satisfying certain Carleson condition) if its elliptic measure belongs to $$A_\infty(\sigma)$$ then necessarily $$\Omega$$ is in fact an NTA domain (and hence chord-arc) and therefore its boundary is uniformly rectifiable. 
    more » « less
  4. Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem. 
    more » « less
  5. Abstract In this paper, we consider the eigensolutions of $$-\Delta u+ Vu=\lambda u$$, where $$\Delta $$ is the Laplacian on a non-compact complete Riemannian manifold. We develop Kato’s methods on manifold and establish the growth of the eigensolutions as r goes to infinity based on the asymptotical behaviors of $$\Delta r$$ and V (x), where r = r(x) is the distance function on the manifold. As applications, we prove several criteria of absence of eigenvalues of Laplacian, including a new proof of the absence of eigenvalues embedded into the essential spectra of free Laplacian if the radial curvature of the manifold satisfies $$ K_{\textrm{rad}}(r)= -1+\frac{o(1)}{r}$$. 
    more » « less