skip to main content


Search for: All records

Award ID contains: 1700365

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. We study the rank of a random n × m matrix An, m; k with entries from GF(2), and exactly k unit entries in each column, the other entries being zero. The columns are chosen independently and uniformly at random from the set of all (nk) such columns. We obtain an asymptotically correct estimate for the rank as a function of the number of columns m in terms of c, n, k, and where m = cn/k. The matrix An, m; k forms the vertex-edge incidence matrix of a k-uniform random hypergraph H. The rank of An, m; k can be expressed as follows. Let |C2| be the number of vertices of the 2-core of H, and | E (C2)| the number of edges. Let m* be the value of m for which |C2| = |E(C2)|. Then w.h.p. for m < m* the rank of An, m; k is asymptotic to m, and for m ≥ m* the rank is asymptotic to m – |E(C2)| + |C2|. In addition, assign i.i.d. U[0, 1] weights Xi, i ∊ 1, 2, … m to the columns, and define the weight of a set of columns S as X(S) = ∑j∊S Xj. Define a basis as a set of n – 1 (k even) linearly independent columns. We obtain an asymptotically correct estimate for the minimum weight basis. This generalises the well-known result of Frieze [On the value of a random minimum spanning tree problem, Discrete Applied Mathematics, (1985)] that, for k = 2, the expected length of a minimum weight spanning tree tends to ζ(3) ∼ 1.202. 
    more » « less
  6. We consider a synchronous dispersion process introduced in pervious study of Cooper and coworkers and we show that on the infinite line the final set of occupied sites takes upO(n) space, wherenis the number of particles involved.

     
    more » « less
  7. Let Ωq denote the set of proper [q]-colorings of the random graph Gn,m,m=dn/2 and let Hq be the graph with vertex set Ωq and an edge {σ,τ} where σ,τ are mappings [n]→[q] iff h(σ,τ)=1. Here h(σ,τ) is the Hamming distance |{v∈[n]:σ(v)≠τ(v)}|. We show that w.h.p. Hq contains a single giant component containing almost all colorings in Ωq if d is sufficiently large and q≥cdlogd for a constant c>3/2. 
    more » « less