Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Whole slide imaging (WSI) has moved digital pathology closer to diagnostic practice in recent years. Due to the inherent tissue topography variability, accurate autofocusing remains a critical challenge for WSI and automated microscopy systems. The traditional focus map surveying method is limited in its ability to acquire a high degree of focus points while still maintaining high throughput. Real‐time approaches decouple image acquisition from focusing, thus allowing for rapid scanning while maintaining continuous accurate focus. This work reviews the traditional focus map approach and discusses the choice of focus measure for focal plane determination. It also discusses various real‐time autofocusing approaches including reflective‐based triangulation, confocal pinhole detection, low‐coherence interferometry, tilted sensor approach, independent dual sensor scanning, beam splitter array, phase detection, dual‐LED illumination and deep‐learning approaches. The technical concepts, merits and limitations of these methods are explained and compared to those of a traditional WSI system. This review may provide new insights for the development of high‐throughput automated microscopy imaging systems that can be made broadly available and utilizable without loss of capacity.more » « less
-
We report a new, to the best of our knowledge, lensless microscopy configuration by integrating the concepts of transverse translational ptychography and defocus multi-height phase retrieval. In this approach, we place a tilted image sensor under the specimen for introducing linearly increasing phase modulation along one lateral direction. Similar to the operation of ptychography, we laterally translate the specimen and acquire the diffraction images for reconstruction. Since the axial distance between the specimen and the sensor varies at different lateral positions, laterally translating the specimen effectively introduces defocus multi-height measurements while eliminating axial scanning. Lateral translation further introduces sub-pixel shift for pixel super-resolution imaging and naturally expands the field of view for rapid whole slide imaging. We show that the equivalent height variation can be precisely estimated from the lateral shift of the specimen, thereby addressing the challenge of precise axial positioning in conventional multi-height phase retrieval. Using a sensor with 1.67 µm pixel size, our low-cost and field-portable prototype can resolve the 690 nm linewidth on the resolution target. We show that a whole slide image of a blood smear with a field of view can be acquired in 18 s. We also demonstrate accurate automatic white blood cell counting from the recovered image. The reported approach may provide a turnkey solution for addressing point-of-care and telemedicine-related challenges.more » « less
-
We report an angle-tilted, wavelength-multiplexed ptychographic modulation approach for multispectral lensless on-chip microscopy. In this approach, we illuminate the specimen with lights at five wavelengths simultaneously. A prism is added at the illumination path for spectral dispersion. Thus, lightwaves at different wavelengths hit the specimen at slightly different incident angles, breaking the ambiguities in mixed-state ptychographic reconstruction. At the detection path, we place a thin diffuser between the specimen and the monochromatic image sensor for encoding the spectral information into 2D intensity measurements. By scanning the sample to different positions, we acquire a sequence of monochromatic images for reconstructing the five complex object profiles at the five wavelengths. An up-sampling procedure is integrated into the recovery process to bypass the resolution limit imposed by the imager pixel size. We demonstrate a half-pitch resolution of 0.55 µm using an image sensor with 1.85 µm pixel size. We also demonstrate quantitative and high-quality multispectral reconstructions of stained tissue sections for digital pathology applications.more » « less
-
We report a novel lensless on-chip microscopy platform based on near-field blind ptychographic modulation. In this platform, we place a thin diffuser in between the object and the image sensor for light wave modulation. By blindly scanning the unknown diffuser to different x – y positions, we acquire a sequence of modulated intensity images for quantitative object recovery. Different from previous ptychographic implementations, we employ a unit magnification configuration with a Fresnel number of ∼50 000, which is orders of magnitude higher than those of previous ptychographic setups. The unit magnification configuration allows us to have the entire sensor area, 6.4 mm by 4.6 mm, as the imaging field of view. The ultra-high Fresnel number enables us to directly recover the positional shift of the diffuser in the phase retrieval process, addressing the positioning accuracy issue plaguing regular ptychographic experiments. In our implementation, we use a low-cost, DIY scanning stage to perform blind diffuser modulation. Precise mechanical scanning that is critical in conventional ptychography experiments is no longer needed in our setup. We further employ an up-sampling phase retrieval scheme to bypass the resolution limit set by the imager pixel size and demonstrate a half-pitch resolution of 0.78 μm. We validate the imaging performance via in vitro cell cultures, transparent and stained tissue sections, and a thick biological sample. We show that the recovered quantitative phase map can be used to perform effective cell segmentation of a dense yeast culture. We also demonstrate 3D digital refocusing of the thick biological sample based on the recovered wavefront. The reported platform provides a cost-effective and turnkey solution for large field-of-view, high-resolution, and quantitative on-chip microscopy. It is adaptable for a wide range of point-of-care-, global-health-, and telemedicine-related applications.more » « less