skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: High-throughput lensless whole slide imaging via continuous height-varying modulation of a tilted sensor
We report a new, to the best of our knowledge, lensless microscopy configuration by integrating the concepts of transverse translational ptychography and defocus multi-height phase retrieval. In this approach, we place a tilted image sensor under the specimen for introducing linearly increasing phase modulation along one lateral direction. Similar to the operation of ptychography, we laterally translate the specimen and acquire the diffraction images for reconstruction. Since the axial distance between the specimen and the sensor varies at different lateral positions, laterally translating the specimen effectively introduces defocus multi-height measurements while eliminating axial scanning. Lateral translation further introduces sub-pixel shift for pixel super-resolution imaging and naturally expands the field of view for rapid whole slide imaging. We show that the equivalent height variation can be precisely estimated from the lateral shift of the specimen, thereby addressing the challenge of precise axial positioning in conventional multi-height phase retrieval. Using a sensor with 1.67 µm pixel size, our low-cost and field-portable prototype can resolve the 690 nm linewidth on the resolution target. We show that a whole slide image of a blood smear with a 120 m m 2 field of view can be acquired in 18 s. We also demonstrate accurate automatic white blood cell counting from the recovered image. The reported approach may provide a turnkey solution for addressing point-of-care and telemedicine-related challenges.  more » « less
Award ID(s):
1700941 2012140
PAR ID:
10304878
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
46
Issue:
20
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 5212
Size(s):
Article No. 5212
Sponsoring Org:
National Science Foundation
More Like this
  1. The mid-IR spectroscopic properties of E r 3 + doped low-phonon C s C d C l 3 and C s P b C l 3 crystals grown by the Bridgman technique have been investigated. Using optical excitations at ∼<#comment/> 800 n m and ∼<#comment/> 660 n m , both crystals exhibited IR emissions at ∼<#comment/> 1.55 , ∼<#comment/> 2.75 , ∼<#comment/> 3.5 , and ∼<#comment/> 4.5 µ<#comment/> m at room temperature. The mid-IR emission at 4.5 µm, originating from the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition, showed a long emission lifetime of ∼<#comment/> 11.6 m s for E r 3 + doped C s C d C l 3 , whereas E r 3 + doped C s P b C l 3 exhibited a shorter lifetime of ∼<#comment/> 1.8 m s . The measured emission lifetimes of the 4 I 9 / 2 state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition in E r 3 + doped C s C d C l 3 and C s P b C l 3 were determined to be ∼<#comment/> 0.14 ×<#comment/> 10 −<#comment/> 20 c m 2 and ∼<#comment/> 0.41 ×<#comment/> 10 −<#comment/> 20 c m 2 , respectively. The results of Judd–Ofelt analysis are presented and discussed. 
    more » « less
  2. We report on spectroscopic measurements on the 4 f 7 6 s 2 8 S 7 / 2 ∘<#comment/> →<#comment/> 4 f 7 ( 8 S ∘<#comment/> ) 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 state were found to be A ( 151 ) = −<#comment/> 228.84 ( 2 ) M H z , B ( 151 ) = 226.9 ( 5 ) M H z and A ( 153 ) = −<#comment/> 101.87 ( 6 ) M H z , B ( 153 ) = 575.4 ( 1.5 ) M H z , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. 
    more » « less
  3. Capable of imaging blood perfusion, oxygenation, and flow simultaneously at the microscopic level, multi-parametric photoacoustic microscopy (PAM) has quickly emerged as a powerful tool for studying hemodynamic and metabolic changes due to physiological stimulations or pathological processes. However, the low scanning speed poised by the correlation-based blood flow measurement impedes its application in studying rapid microvascular responses. To address this challenge, we have developed a new, to the best of our knowledge, multi-parametric PAM system. By extending the optical scanning range with a cylindrically focused ultrasonic transducer (focal zone, 76 µ<#comment/> m ×<#comment/> 4.5 m m ) for simultaneous acquisition of 500 B-scans, the new system is 112 times faster than our previous multi-parametric system that uses a spherically focused transducer (focal diameter, 40 µm) and enables high-resolution imaging of blood perfusion, oxygenation, and flow over an area of 4.5 ×<#comment/> 1 m m 2 at a frame rate of 1 Hz. We have demonstrated the feasibility of this system in the living mouse ear. Further development of this system into reflection mode will enable real-time cortex-wide imaging of hemodynamics and metabolism in the mouse brain. 
    more » « less
  4. Amorphous tantala ( T a 2 O 5 ) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist A r + or A r + / O 2 + bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV A r + . A detrimental influence from low energy O 2 + bombardment on absorption loss and mechanical loss is observed. Low energy A r + bombardment removes excess oxygen point defects, while O 2 + bombardment introduces defects into the tantala films. 
    more » « less
  5. We present a performance analysis of compact monolithic optomechanical inertial sensors that describes their key fundamental limits and overall acceleration noise floor. Performance simulations for low-frequency gravity-sensitive inertial sensors show attainable acceleration noise floors on the order of 1 ×<#comment/> 10 −<#comment/> 11 m / s 2 H z . Furthermore, from our performance models, we devised an optimization approach for our sensor designs, sensitivity, and bandwidth trade space. We conducted characterization measurements of these compact mechanical resonators, demonstrating mQ -products at levels of 250 kg, which highlight their exquisite acceleration sensitivity. 
    more » « less