skip to main content


Search for: All records

Award ID contains: 1701104

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When synthetic polyamines, such poly(allylamine hydrochloride) (PAH), are mixed with crosslink-forming multivalent anions, they can undergo complex coacervation. This phenomenon has recently been exploited in various applications, ranging from inorganic material synthesis, to underwater adhesion, to multiple-month release of small, water-soluble molecules. Here, using ibuprofen as a model drug molecule, we show that these coacervates may be especially effective in the long-term release of weakly amphiphilic anionic drugs. Colloidal amphiphile/polyelectrolyte complex dispersions are first prepared by mixing the amphiphilic drug (ibuprofen) with PAH. Pentavalent tripolyphosphate (TPP) ions are then added to these dispersions to form ibuprofen-loaded PAH/TPP coacervates (where the strongly-binding TPP displaces the weaker-bound ibuprofen from the PAH amine groups). The initial ibuprofen/PAH binding leads to extremely high drug loading capacities (LC-values), where the ibuprofen comprises up to roughly 30% of the coacervate mass. Conversely, the dense ionic crosslinking of PAH by TPP results in very slow release rates, where the release of ibuprofen (a small, water-soluble drug) is extended over timescales that exceed 6 months. When ibuprofen is replaced with strong anionic amphiphiles, however ( i.e. , sodium dodecyl sulfate and sodium dodecylbenzenesulfonate), the stronger amphiphile/polyelectrolyte binding disrupts PAH/TPP association and sharply increases the coacervate solute permeability. These findings suggest that: (1) as sustained release vehicles, PAH/TPP coacervates might be very attractive for the encapsulation and multiple-month release of weakly amphiphilic anionic payloads; and (2) strong amphiphile incorporation could be useful for tailoring PAH/TPP coacervate properties. 
    more » « less
  2. When polyelectrolytes and oppositely-charged multivalent ions are mixed in aqueous solutions, they can self-assemble into an array of soft materials and complex fluids, ranging from micro- and nanoparticles, to coacervates, to macroscopic gels. Here, we describe the formation and useful/interesting properties of two such materials: (1) submicron particles formed via ionotropic gelation of the cationic polysaccharide chitosan with tripolyphosphate (TPP); and (2) coacervates prepared from mixtures of the synthetic polycation poly(allylamine hydrochloride) (PAH) with either TPP or pyrophosphate (PPi). For chitosan/TPP particles (which are widely explored as potential drug carriers) we show how, by inhibiting chitosan/TPP binding, monovalent salt (NaCl) can be used to: (1) drastically slow down the rapid ionotropic gelation process to facilitate the experimental analysis of how these particles form; (2) enhance the stability of these particles to aggregation; and (3) achieve improved control over particle size. Unlike the gel-like chitosan/TPP ionic networks, which are both soft (with 10^3 - 10^4 Pa storage moduli) and water-rich, mixtures of PAH with TPP and PPi form high-modulus, putty-like coacervates with storage moduli above 10^5 Pa and much lower (26 - 40 wt%) water contents. These moduli and water contents evidently reflect the high ionic crosslink densities enabled by the densely-charged and flexible PAH chains, and strong PAH/PPi and PAH/TPP binding (which also imparts these coacervates with long relaxation times). Besides their bulk properties, we show that the coacervates adhere to diverse substrates (both hydrophilic and hydrophobic) and, when used as wet adhesives, deliver short-term tensile adhesion strengths above 10^5 Pa. Further, the dense crosslinking within PAH/PPi and PAH/TPP coacervates makes them strong barriers to solute diffusion and (regardless of the solute-coacervate binding strength) enables them to release small water-soluble molecules over multiple months. These findings suggest that PAH/PPi and PAH/TPP coacervates can provide a simple route to both underwater adhesion and long-term controlled release. 
    more » « less