skip to main content

Title: Microgel and coacervate formation in polyelectrolyte​/multivalent ion mixtures
When polyelectrolytes and oppositely-charged multivalent ions are mixed in aqueous solutions, they can self-assemble into an array of soft materials and complex fluids, ranging from micro- and nanoparticles, to coacervates, to macroscopic gels. Here, we describe the formation and useful/interesting properties of two such materials: (1) submicron particles formed via ionotropic gelation of the cationic polysaccharide chitosan with tripolyphosphate (TPP); and (2) coacervates prepared from mixtures of the synthetic polycation poly(allylamine hydrochloride) (PAH) with either TPP or pyrophosphate (PPi). For chitosan/TPP particles (which are widely explored as potential drug carriers) we show how, by inhibiting chitosan/TPP binding, monovalent salt (NaCl) can be used to: (1) drastically slow down the rapid ionotropic gelation process to facilitate the experimental analysis of how these particles form; (2) enhance the stability of these particles to aggregation; and (3) achieve improved control over particle size. Unlike the gel-like chitosan/TPP ionic networks, which are both soft (with 10^3 - 10^4 Pa storage moduli) and water-rich, mixtures of PAH with TPP and PPi form high-modulus, putty-like coacervates with storage moduli above 10^5 Pa and much lower (26 - 40 wt%) water contents. These moduli and water contents evidently reflect the high ionic crosslink densities enabled by the densely-charged and flexible PAH chains, and strong PAH/PPi and PAH/TPP binding (which also imparts these coacervates with long relaxation times). Besides their bulk properties, we show that the coacervates adhere to diverse substrates (both hydrophilic and hydrophobic) and, when used as wet adhesives, deliver short-term tensile adhesion strengths above 10^5 Pa. Further, the dense crosslinking within PAH/PPi and PAH/TPP coacervates makes them strong barriers to solute diffusion and (regardless of the solute-coacervate binding strength) enables them to release small water-soluble molecules over multiple months. These findings suggest that PAH/PPi and PAH/TPP coacervates can provide a simple route to both underwater adhesion and long-term controlled release.  more » « less
Award ID(s):
1701104 1133795
Author(s) / Creator(s):
Date Published:
Journal Name:
Abstracts of Papers, 254th ACS National Meeting & Exposition
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When synthetic polyamines, such poly(allylamine hydrochloride) (PAH), are mixed with crosslink-forming multivalent anions, they can undergo complex coacervation. This phenomenon has recently been exploited in various applications, ranging from inorganic material synthesis, to underwater adhesion, to multiple-month release of small, water-soluble molecules. Here, using ibuprofen as a model drug molecule, we show that these coacervates may be especially effective in the long-term release of weakly amphiphilic anionic drugs. Colloidal amphiphile/polyelectrolyte complex dispersions are first prepared by mixing the amphiphilic drug (ibuprofen) with PAH. Pentavalent tripolyphosphate (TPP) ions are then added to these dispersions to form ibuprofen-loaded PAH/TPP coacervates (where the strongly-binding TPP displaces the weaker-bound ibuprofen from the PAH amine groups). The initial ibuprofen/PAH binding leads to extremely high drug loading capacities (LC-values), where the ibuprofen comprises up to roughly 30% of the coacervate mass. Conversely, the dense ionic crosslinking of PAH by TPP results in very slow release rates, where the release of ibuprofen (a small, water-soluble drug) is extended over timescales that exceed 6 months. When ibuprofen is replaced with strong anionic amphiphiles, however ( i.e. , sodium dodecyl sulfate and sodium dodecylbenzenesulfonate), the stronger amphiphile/polyelectrolyte binding disrupts PAH/TPP association and sharply increases the coacervate solute permeability. These findings suggest that: (1) as sustained release vehicles, PAH/TPP coacervates might be very attractive for the encapsulation and multiple-month release of weakly amphiphilic anionic payloads; and (2) strong amphiphile incorporation could be useful for tailoring PAH/TPP coacervate properties. 
    more » « less
  2. Abstract

    Synthetically modified proteins, such as gelatin methacryloyl (GelMA), are growing in popularity for bioprinting and biofabrication. GelMA is a photocurable macromer that can rapidly form hydrogels, while also presenting bioactive peptide sequences for cellular adhesion and proliferation. The mechanical properties of GelMA are highly tunable by modifying the degree of substitution via synthesis conditions, though the effects of source material and thermal gelation have not been comprehensively characterized for lower concentration gels. Herein, the effects of animal source and processing sequence are investigated on scaffold mechanical properties. Hydrogels of 4–6 wt% are characterized. Depending on the temperature at crosslinking, the storage moduli for GelMA derived from pigs, cows, and cold‐water fish range from 723 to 7340 Pa, 516 to 3484 Pa, and 294 to 464 Pa, respectively. The maximum storage moduli are achieved only by coordinated physical gelation and chemical crosslinking. In this method, the classic thermo‐reversible gelation of gelatin occurs when GelMA is cooled below a thermal transition temperature, which is subsequently “locked in” by chemical crosslinking via photocuring. The effects of coordinated physical gelation and chemical crosslinking are demonstrated by precise photopatterning of cell‐laden microstructures, inducing different cellular behavior depending on the selected mechanical properties of GelMA.

    more » « less
  3. Cationic glycylalanylglycine (GAG) self-assembles into a gel in a 55 mol% ethanol/45 mol% water mixture. The gel exhibits a network of crystalline fibrils grown to lengths on a 10 −4 –10 −5 m scale (Farrel et al. , Soft Matter , 2016, 12 , 6096–6110). Rheological data are indicative of a rather strong gel with storage moduli in the 10 kPa regime. Spectroscopic data revealed the existence of two gel phases; one forms below T = 15 °C (phase I) while the other one forms in a temperature range between 15 °C and the melting temperature of ca. 35 °C (phase II). We explored the reformation of the cationic GAG gel in 55 mol% ethanol/45 mol% water after thermal annealing by spectroscopic and rheological means. Our data reveal that even a short residence time of 5 minutes in the sol phase at 50 °C produced a delay of the gelation process and a gel of lesser strength. These observations suggest that the residence time at the annealing temperature can be used to adjust the strength of both gel phases. Our spectroscopic data show that the annealing process does not change the chirality of peptide fibrils in the two gel phases and that the initial aggregation state of the reformation process is by far more ordered for phase I than it is for phase II. In the gel phases of GAG/ethanol/water mixtures, ethanol seems to function as a sort of catalyst that enables the self-assembly of the peptide in spite of its low intrinsic propensity for aggregation. 
    more » « less
  4. Phosphorus (P) loss from agro-ecosystems impinges upon P use efficiency by plants and thereby constitutes both agronomic and environmental nuisances. Herein, we report on the potential for controlling P leaching loss and application in crop fertilization through repurposing and nano-functionalizing tripolyphosphate (TPP) as a sole P source. The developed TPP-Chitosan and TPP-Chitosan-ZnO nanofertilizers exhibited positive surface charges, 5.8 and 13.8 mV, and hydrodynamic sizes of 430 and 301 nm, respectively. In soil, nanoformulations of TPP-Chitosan and TPP-Chitosan-ZnO significantly reduced cumulative P leaching during 72 h, reaching 91 and 97% reductions, respectively, compared to a conventional fertilizer, monoammonium phosphate (MAP). Cumulative P leaching after 72 h from these nanofertilizers was, respectively, 84 and 95% lower than from TPP alone. TPP-Chitosan-ZnO was, overall, 65% more effective in reducing P leaching, compared to TPP-Chitosan. Relative to MAP, the wheat plant height was significantly increased by TPP-Chitosan-ZnO by 33.0%. Compared to MAP, TPP-Chitosan and TPP-Chitosan-ZnO slightly increased wheat grain yield by 21 and 30%, respectively. Notably, TPP-Chitosan-ZnO significantly decreased shoot P levels, by 35.5, 47, and 45%, compared to MAP, TPP, and TPP-Chitosan, respectively. Zn release over 72 h from TPP-Chitosan-ZnO was considerably lower, compared to a control, ZnO nanoparticles, and averaged, respectively, 34.7 and 0.065 mg/L, which was 534 times higher for the former. Grain Zn was significantly higher in the TPP-Chitosan treatment, relative to MAP. TPP-Chitosan also significantly mobilized the resident K, S, Mg, and Ca from soil into the plant, helping to improve the overall nutritional quality and supporting the role of chitosan in nutrient mobilization. Taken together, our data highlight the potential for repurposing a non-fertilizer P material, TPP, for agricultural and environmental applications and the effect of applying nanotechnology on such outcomes. Broadly speaking, the reduction in P loss is critical for controlling the eutrophication of water bodies due to nutrient overload and for sustaining the dwindling global P resources. 
    more » « less
  5. null (Ed.)
    The unexpected intersection of rhyolitic magma and retrieval of quenched glass particles at the Iceland Deep Drilling Project-1 geothermal well in 2009 at Krafla, Iceland, provide unprecedented opportunities to characterize the genesis, storage, and behavior of subsurface silicic magma. In this study, we analyzed the complete time series of glass particles retrieved after magma was intersected, in terms of distribution, chemistry, and vesicle textures. Detailed analysis of the particles revealed them to represent bimodal rhyolitic magma compositions and textures. Early-retrieved clear vesicular glass has higher SiO2, crystal, and vesicle contents than later-retrieved dense brown glass. The vesicle size and distribution of the brown glass also reveal several vesicle populations. The glass particles vary in δD from −120‰ to −80‰ and have dissolved water contents spanning 1.3−2 wt%, although the majority of glass particles exhibit a narrower range. Vesicular textures indicate that volatile overpressure release predominantly occurred prior to late-stage magma ascent, and we infer that vesiculation occurred in response to drilling-induced decompression. The textures and chemistry of the rhyolitic glasses are consistent with variable partial melting of host felsite. The drilling recovery sequence indicates that the clear magma (lower degree partial melt) overlays the brown magma (higher degree partial melt). The isotopes and water species support high temperature hydration of these partial melts by a mixed meteoric and magmatic composition fluid. The textural evidence for partial melting and lack of crystallization imply that magma production is ongoing, and the growing magma body thus has a high potential for geothermal energy extraction. In summary, transfer of heat and fluids into felsite triggered variable degrees of felsite partial melting and produced a hydrated rhyolite magma with chemical and textural heterogeneities that were then enhanced by drilling perturbations. Such partial melting could occur extensively in the crust above magma chambers, where complex intrusive systems can form and supply the heat and fluids required to re-melt the host rock. Our findings emphasize the need for higher resolution geophysical monitoring of restless calderas both for hazard assessment and geothermal prospecting. We also provide insight into how shallow silicic magma reacts to drilling, which could be key to future exploration of the use of magma bodies in geothermal energy. 
    more » « less