- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Kim, Minseob (3)
-
Yoo, Choong-Shik (3)
-
Ahmed, Sohan (1)
-
Howard, Alex (1)
-
Lei, Jialin (1)
-
Lim, Jinhyuk (1)
-
Meng, Yue (1)
-
Oka, Kenta (1)
-
Smith, Jesse (1)
-
Somayazulu, Maddury S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the evidence of superionic phase formed in H2O and, for the first time, diffusive H2O–He phase, based on time-resolved x-ray diffraction experiments performed on ramp-laser-heated samples in diamond anvil cells. The diffraction results signify a similar bcc-like structure of superionic H2O and diffusive He–H2O, while following different transition dynamics. Based on time and temperature evolution of the lattice parameter, the superionic H2O phase forms gradually in pure H2O over the temperature range of 1350–1400 K at 23 GPa, but the diffusive He–H2O phase forms abruptly at 1300 K at 26 GPa. We suggest that the faster dynamics and lower transition temperature in He–H2O are due to a larger diffusion coefficient of interstitial-filled He than that of more strongly bound H atoms. This conjecture is then consistent with He disordered diffusive phase predicted at lower temperatures, rather than H-disordered superionic phase in He–H2O.more » « less
-
Howard, Alex; Kim, Minseob; Smith, Jesse; Yoo, Choong-Shik (, Physical Review B)We report on the structural verification of metastable ice VII solidifying in the phase space of ice VI at 1.80 GPa at room temperature. Using time-resolved (TR) x-ray diffraction and TR ruby luminescence paired with high-speed microphotography utilizing a dynamic diamond anvil cell, an initial compression rate range from 0.12 to 95.84 GPa/s was explored. The solidification pressure of metastable ice VII has a potential sigmoidal dependence upon compression rate with a turnover compression rate of ∼80 GPa/s. The preferred crystallization of ice VII in the stability field of ice VI is due to the increased nucleation rate of ice VII over ice VI at 1.77 GPa that is driven by the surface energy difference between the liquid and solid phases along with the change in Gibbs free energy of solidification. The dynamic pressure-volume–compression behaviors of ice phases (VI and VII) show a lattice stiffening in both phases, especially during the compression loading. It is also found that the compression rate greatly affects the solid-solid phase transition between ice VI and VII but does not affect the liquid-solid transition between water and ice VI as much. Lastly, a third phase transition was found to occur after metastable ice VII transforms into high-density amorphous (HDA) ice, which could be a disordered hydrogen-bonded network configuration of ice VII forming out of HDA ice facilitated by the decoupling of the oxygen movement and reorientation of the molecule. These results demonstrate the complexity of a seemingly simple molecule , how it can readily change its static properties with the modification of (de)compression rate, and highlight the need to use multiple TR structural and spectroscopic probes at higher time resolutions to realize the most comprehensive understanding.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Lei, Jialin; Lim, Jinhyuk; Kim, Minseob; Yoo, Choong-Shik (, The Journal of Physical Chemistry Letters)
An official website of the United States government
