skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for superionic H 2 O and diffusive He–H 2 O at high temperature and high pressure
Abstract We present the evidence of superionic phase formed in H2O and, for the first time, diffusive H2O–He phase, based on time-resolved x-ray diffraction experiments performed on ramp-laser-heated samples in diamond anvil cells. The diffraction results signify a similar bcc-like structure of superionic H2O and diffusive He–H2O, while following different transition dynamics. Based on time and temperature evolution of the lattice parameter, the superionic H2O phase forms gradually in pure H2O over the temperature range of 1350–1400 K at 23 GPa, but the diffusive He–H2O phase forms abruptly at 1300 K at 26 GPa. We suggest that the faster dynamics and lower transition temperature in He–H2O are due to a larger diffusion coefficient of interstitial-filled He than that of more strongly bound H atoms. This conjecture is then consistent with He disordered diffusive phase predicted at lower temperatures, rather than H-disordered superionic phase in He–H2O.  more » « less
Award ID(s):
2112653 1701360
PAR ID:
10642539
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
34
Issue:
39
ISSN:
0953-8984
Page Range / eLocation ID:
394001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present phase‐equilibria experiments of a K‐bearing, depleted peridotite (Mg# 92) fluxed with a mixed CO2‐H2O fluid (0.5 wt.% CO2and 0.94 wt.% H2O in the bulk) to gain insight into the stability of volatile‐bearing partial melts versus volatile‐bearing mineral phases in a depleted peridotite system. Experiments were performed at 850–1150 °C and 2–4 GPa using a piston‐cylinder and a multianvil apparatus. Olivine, orthopyroxene, clinopyroxene, and spinel/garnet are present at all experimental conditions. Textural confirmation of partial melt is made at temperatures as low as 1000 °C at 2 GPa, 950 °C at 3 GPa, and 1000 °C at 4 GPa marking the onset of melting at 900–1000 °C at 2 GPa, 850–950 °C at 3 GPa, and 950–1000 °C at 3 GPa. Phlogopite and magnesite breakdown at 900–1000 °C at 2 GPa, 950–1000 °C at 3 GPa, and 1000–1050 °C at 4 GPa. Comparison with previously published experiments in depleted peridotite system with identical CO2‐H2O content introduced via a silicic melt show that introduction of CO2‐H2O as fluid lowers the temperature of phlogopite breakdown by 150–200 °C at 2–4 GPa and stabilizes partial melts at lower temperatures. Our study thus, shows that the volatile‐bearing phase present in the cratonic mantle is controlled by bulk composition and is affected by the process of volatile addition during craton formation in a subduction zone. In addition, volatile introduction via melt versus aqueous fluid, leads to different proportion of anhydrous phases such as olivine and orthopyroxene. Considering the agent of metasomatism is thus critical to evaluate how the bulk composition of depleted peridotite is modified, leading to potential stability of volatile‐bearing phases as the cause of anomalously low shear wave velocity in mantle domains such as mid lithospheric discontinuities beneath continents. 
    more » « less
  2. Abstract H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in lower pressure runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers. 
    more » « less
  3. Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium. 
    more » « less
  4. Abstract Na2WO4/SiO2, a material known to catalyze alkane selective oxidation including the oxidative coupling of methane (OCM), is demonstrated to catalyze selective hydrogen combustion (SHC) with >97 % selectivity in mixtures with several hydrocarbons (CH4, C2H6, C2H4, C3H6, C6H6) in the presence of gas‐phase dioxygen at 883–983 K. Hydrogen combustion rates exhibit a near‐first‐order dependence on H2partial pressure and are zero‐order in H2O and O2partial pressures. Mechanistic studies at 923 K using isotopically‐labeled reagents demonstrate the kinetic relevance of H−H dissociation and absence of O‐atom recombination. In situ X‐ray diffraction (XRD) and W LIII‐edge X‐ray absorption spectroscopy (XAS) studies demonstrate, respectively, a loss of Na2WO4crystallinity and lack of second‐shell coordination with respect to W6+cations below 923 K; benchmark experiments show that alkali cations must be present for the material to be selective for hydrogen combustion, but that materials containing Na alone have much lower combustion rates (per gram Na) than those containing Na and W. These data suggest a synergy between Na and W in a disordered phase at temperatures below the bulk melting point of Na2WO4(971 K) during SHC catalysis. The Na2WO4/SiO2SHC catalyst maintains stable combustion rates at temperatures ca. 100 K higher than redox‐active SHC catalysts and could potentially enable enhanced olefin yields in tandem operation of reactors combining alkane dehydrogenation with SHC processes. 
    more » « less
  5. Formation of vitreous ice during rapid compression of water at room temperature is important for biology and the study of biological systems. Here, we show that Raman spectra of rapidly compressed water at greater than 1 GPa at room temperature exhibits the signature of high-density amorphous ice, whereas the X-ray diffraction (XRD) pattern is dominated by crystalline ice VI. To resolve this apparent contradiction, we used molecular dynamics simulations to calculate full vibrational spectra and diffraction patterns of mixtures of vitreous ice and ice VI, including embedded interfaces between the two phases. We show quantitatively that Raman spectra, which probe the local polarizability with respect to atomic displacements, are dominated by the vitreous phase, whereas a small amount of the crystalline component is readily apparent by XRD. The results of our combined experimental and theoretical studies have implications for detecting vitreous phases of water, survival of biological systems under extreme conditions, and biological imaging. The results provide additional insight into the stable and metastable phases of H 2 O as a function of pressure and temperature, as well as of other materials undergoing pressure-induced amorphization and other metastable transitions. 
    more » « less