Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Let $$(G,\unicode[STIX]{x1D707})$$ be a pair of a reductive group $$G$$ over the $$p$$ -adic integers and a minuscule cocharacter $$\unicode[STIX]{x1D707}$$ of $$G$$ defined over an unramified extension. We introduce and study ‘ $$(G,\unicode[STIX]{x1D707})$$ -displays’ which generalize Zink’s Witt vector displays. We use these to define certain Rapoport–Zink formal schemes purely group theoretically, i.e. without $$p$$ -divisible groups.more » « less
-
null (Ed.)Abstract Following the method of Seifert surfaces in knot theory, we define arithmetic linking numbers and height pairings of ideals using arithmetic duality theorems, and compute them in terms of $$n$$-th power residue symbols. This formalism leads to a precise arithmetic analogue of a “path-integral formula” for linking numbers.more » « less
An official website of the United States government

Full Text Available