skip to main content


Search for: All records

Award ID contains: 1701714

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tooth replacement in piranhas is unusual: all teeth on one side of the head are lost as a unit, then replaced simultaneously. We used histology and microCT to examine tooth‐replacement modes across carnivorous piranhas and their herbivorous pacu cousins (Serrasalmidae) and then mapped replacement patterns onto a molecular phylogeny. Pacu teeth develop and are replaced in a manner like piranhas. For serrasalmids, unilateral tooth replacement is not an “all or nothing” phenomenon; we demonstrate that both sides of the jaws have developing tooth rows within them, albeit with one side more mineralized than the other. All serrasalmids (except one) share unilateral tooth replacement, so this is not an adaptation for carnivory. All serrasalmids have interlocking teeth; piranhas interdigitate lateral tooth cusps with adjacent teeth, forming a singular saw‐like blade, whereas lateral cusps in pacus clasp together. For serrasalmids to have an interlocking dentition, their teeth need to develop and erupt at the same time. We propose that interlocking mechanisms prevent tooth loss and ensure continued functionality of the feeding apparatus. Serrasalmid dentitions are ubiquitously heterodont, having incisiform and molariform dentitions reminiscent of mammals. Finally, we propose that simultaneous tooth replacement be considered as a synapomorphy for the family.

     
    more » « less
  2. Abstract

    Durophagous predators consume hard‐shelled prey such as bivalves, gastropods, and large crustaceans, typically by crushing the mineralized exoskeleton. This is costly from the point of view of the bite forces involved, handling times, and the stresses inflicted on the predator's skeleton. It is not uncommon for durophagous taxa to display an ontogenetic shift from softer to harder prey items, implying that it is relatively difficult for smaller animals to consume shelled prey. Batoid fishes (rays, skates, sawfishes, and guitarfishes) have independently evolved durophagy multiple times, despite the challenges associated with crushing prey harder than their own cartilaginous skeleton.Potamotrygon leopoldiis a durophagous freshwater ray endemic to the Xingu River in Brazil, with a jaw morphology superficially similar to its distant durophagous marine relatives, eagle rays (e.g.,Aetomylaeus, Aetobatus). We used second moment of area as a proxy for the ability to resist bending and analyzed the arrangement of the mineralized skeleton of the jaw ofP. leopoldiover ontogeny using data from computed tomography (CT) scans. The jaws ofP. leopoldido not resist bending nearly as well as other durophagous elasmobranchs, and the jaws are stiffest nearest the joints rather than beneath the dentition. While second moment has similar material distribution over ontogeny, mineralization of the jaws under the teeth increases with age. Neonate rays have low jaw stiffness and poor mineralization, suggesting thatP. leopoldimay not feed on hard‐shelled prey early in life. These differences in the shape, stiffness and mineralization of the jaws ofP. leopoldicompared to its durophagous relatives show there are several solutions to the problem of crushing shelled prey with a compliant skeleton.

     
    more » « less
  3. Abstract

    Suction feeding and gill ventilation in teleosts are functionally coupled, meaning that there is an overlap in the structures involved with both functions. Functional coupling is one type of morphological integration, a term that broadly refers to any covariation, correlation, or coordination among structures. Suction feeding and gill ventilation exhibit other types of morphological integration, including functional coordination (a tendency of structures to work together to perform a function) and evolutionary integration (a tendency of structures to covary in size or shape across evolutionary history). Functional coupling, functional coordination, and evolutionary integration have each been proposed to limit morphological diversification to some extent. Yet teleosts show extraordinary cranial diversity, suggesting that there are mechanisms within some teleost clades that promote morphological diversification, even within the highly integrated suction feeding and gill ventilatory systems. To investigate this, we quantified evolutionary integration among four mechanical units associated with suction feeding and gill ventilation in a diverse clade of benthic, primarily suction-feeding fishes (Cottoidei; sculpins and relatives). We reconstructed cottoid phylogeny using molecular data from 108 species, and obtained 24 linear measurements of four mechanical units (jaws, hyoid, opercular bones, and branchiostegal rays) from micro-CT reconstructions of 44 cottoids and 1 outgroup taxon. We tested for evolutionary correlation and covariation among the four mechanical units using phylogenetically corrected principal component analysis to reduce the dimensionality of measurements for each unit, followed by correlating phylogenetically independent contrasts and computing phylogenetic generalized least squares models from the first principle component axis of each of the four mechanical units. The jaws, opercular bones, and branchiostegal rays show evolutionary integration, but the hyoid is not positively integrated with these units. To examine these results in an ecomorphological context, we used published ecological data in phylogenetic ANOVA models to demonstrate that the jaw is larger in fishes that eat elusive or grasping prey (e.g., prey that can easily escape or cling to the substrate) and that the hyoid is smaller in intertidal and hypoxia-tolerant sculpins. Within Cottoidei, the relatively independent evolution of the hyoid likely has reduced limitations on morphological evolution within the highly morphologically integrated suction feeding and gill ventilatory systems.

     
    more » « less
  4. A new genus and two new species of miniature clingfishes are described based on specimens collected from dense stands of macroalgae in intertidal and shallow subtidal areas along the coast of southern Australia. The new genus, Barryichthys , is distinguished from other genera of the Gobiesocidae by unique features of the adhesive disc, including elongate papillae in adhesive disc regions A and B, the reduction and/or loss of several elements of the cephalic lateral line canals, the lower gill arch skeleton, and the neurocranium, and by having two distinct types of pectoral-fin rays. Barryichthyshutchinsi is described based on 19 specimens (12.4–18.7 mm SL) from Western Australia and South Australia. Barryichthysalgicola is described based on 22 specimens (9.0–21.0 mm SL) from Victoria, New South Wales and Tasmania. The new species are distinguished from each other by characters of body and head shape, vertebral counts, and aspects of live colour pattern. The new genus shares several characters in common with Parvicrepis , another genus of miniature gobiesocids from southern Australia that also inhabits macroalgae habitats. The many reductions and novel characters of Barryichthys are discussed within the context of miniaturisation. 
    more » « less
  5. Abstract Structural and functional properties of exoskeleton in moulting sea slaters Ligia pallasii from the Eastern Pacific coast were investigated with CT scanning and electron microscopy. Ultrastructure of preecdysial and postecdysial cuticular layers was described in premoult, intramoult and postmoult animals. Cuticle is a flexible extracellular matrix connected to the epidermal cells through pore channels. During premoult epicuticle and exocuticle are formed and during intramoult and postmoult endocuticular lamellae are deposited and the cuticle is progressively constructed by thickening and mineralization. Cuticle permeability, flexibility and waterproofing capacity change accordingly. Elaboration of epicuticular scales connected to an extensive network of nanotubules, establish its anti-adhesive and hydrophobic properties. Labelling with gold conjugated WGA lectins on Tokuyashu thawed cryosections exposes differences in chitin content between exocuticle and endocuticle. Histochemical staining of cuticle shows presence of acidic carbohydrates/glycoconjugates and lipoproteins in epicuticular layer. Chitin microfibrils are formed at the microvillar border of epidermal cells with abundant Golgi apparatus and secretory vesicles. Numerous spherules associated with nanotubules were observed in the ecdysial space in intramoult animals. The mineral component of the cuticle as visualized with CT scanning indicates progressive mineral resorption from the posterior to the anterior half of the body in premoult animals, its translocation from the anterior to posterior part during intramoult and its progressive deposition in the posterior and anterior exoskeleton during postmoult. Cuticle of sea slaters is a unique biocomposite and biodynamic material constantly reconstructed during frequent moults, and adapted to specific physical and biotic conditions of the high intertidal rocky zone. 
    more » « less
  6. The Western Ghats (WG) is an escarpment on the west coast of Peninsular India, housing one of the richest assemblages of frogs in the world, with three endemic families. Here, we report the discovery of a new ancient lineage from a high-elevation massif in the Wayanad Plateau of the southern WG. Phylogenetic analysis reveals that the lineage belongs to Natatanura and clusters with Nyctibatrachidae, a family endemic to the WG/Sri Lanka biodiversity hotspot. Based on geographic distribution, unique morphological traits, deep genetic divergence, and phylogenetic position that distinguishes the lineage from the two nyctibatrachid subfamilies Nyctibatrachinae Blommers-Schlösser, 1993 and Lankanectinae Dubois & Ohler, 2001, we erect a new subfamily Astrobatrachinae subfam. nov. (endemic to the WG, Peninsular India), and describe a new genus Astrobatrachus gen. nov. and species, Astrobatrachus kurichiyana sp. nov. The discovery of this species adds to the list of deeply divergent and monotypic or depauperate lineages with narrow geographic ranges in the southern massifs of the WG. The southern regions of the WG have long been considered geographic and climatic refugia, and this new relict lineage underscores their evolutionary significance. The small range of this species exclusively outside protected areas highlights the significance of reserve forest tracts in the WG in housing evolutionary novelty. This reinforces the need for intensive sampling to uncover new lineages and advance our understanding of the historical biogeography of this ancient landmass. 
    more » « less
  7. Flexorincus , new genus and species, is described from 15 specimens (14.0–27.2 mm SL) collected from shallow (0–9 meters) intertidal and sub-tidal waters of the Rangitāhua Kermadec Islands, New Zealand. The new taxon is distinguished from all other members of the Gobiesocidae by a combination of characters, including a heterodont dentition comprising both conical and distinct incisiviform teeth that are laterally compressed with a strongly recurved cusp, an oval-shaped opening between premaxillae, a double adhesive disc with a well-developed articulation between basipterygia and ventral postcleithra, and many reductions in the cephalic lateral line canal system. The new taxon is tentatively placed within the subfamily Diplocrepinae but shares a number of characteristics of the oral jaws and the adhesive disc skeleton with certain members of the Aspasminae and Diademichthyinae. 
    more » « less