Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Phased arrays, commonly used in IEEE 802.11ad and 5G radios, are capable of focusing radio frequency signals in a specific direction or a spatial region. Beamforming achieves such directional or spatial concentration of signals and enables phased array-based radios to achieve high data rates. Designing beams for millimeter wave and terahertz communication using massive phased arrays, however, is challenging due to hardware constraints and the wide bandwidth in these systems. For example, beams which are optimal at the center frequency may perform poor in wideband communication systems where the radio frequencies differ substantially from the center frequency. The poor performance in such systems is due to differences in the optimal beamformers corresponding to distinct radio frequencies within the wide bandwidth. Such a mismatch leads to a misfocus effect in near-field systems and the beam squint effect in far-field systems. In this paper, we investigate the misfocus effect and propose InFocus, a low complexity technique to construct beams that are well suited for massive wideband phased arrays. The beams are constructed using a carefully designed frequency modulated waveform in the spatial dimension. InFocus mitigates beam misfocus and beam squint when applied to near-field and far-field systems.more » « less