skip to main content


Search for: All records

Award ID contains: 1704715

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An approach to reproducibility problems related to porting software across machines and compilers. 
    more » « less
  2. null ; null (Ed.)
    Automated techniques for analyzing floating-point code for roundoff error as well as control-flow instability are of growing importance. It is important to compute rigorous estimates of roundoff error, as well as determine the extent of control-flow instability due to roundoff error flowing into conditional statements. Currently available analysis techniques are either non-rigorous or do not produce tight roundoff error bounds in many practical situations. Our approach embodied in a new tool called \seesaw employs {\em symbolic reverse-mode automatic differentiation}, smoothly handling conditionals, and offering tight error bounds. Key steps in \seesaw include weakening conditionals to accommodate roundoff error, computing a symbolic error function that depends on program paths taken, and optimizing this function whose domain may be non-rectangular by paving it with a rectangle-based cover. Our benchmarks cover many practical examples for which such rigorous analysis has hitherto not been applied, or has yielded inferior results. 
    more » « less
  3. null (Ed.)
  4. Multigrid is one of the most effective methods for solving elliptic PDEs. It is algorithmically optimal and is robust when combined with Krylov methods. Algebraic multigrid is especially attractive due to its blackbox nature. This however comes at the cost of increased setup costs that can be significant in case of systems where the system matrix changes frequently making it difficult to amortize the setup cost. In this work, we investigate several strategies for performing lazy updates to the multigrid hierarchy corresponding to changes in the system matrix. These include delayed updates, value updates without changing structure, process local changes, and full updates. We demonstrate that in many cases, the overhead of building the AMG hierarchy can be mitigated for rapidly changing system matrices. 
    more » « less
  5. Reasoning about mixed real and floating-point constraints is essential for developing accurate analysis tools for floating-point programs. This paper presents FPRoCK, a prototype tool for solving mixed real and floating-point formulas. FPRoCK transforms a mixed formula into an equisatisfiable one over the reals. This formula is then solved using an off-the-shelf SMT solver. FPRoCK is also integrated with the PRECiSA static analyzer, which computes a sound estimation of the round-off error of a floating-point program. It is used to detect infeasible computational paths, thereby improving the accuracy of PRECiSA. 
    more » « less