skip to main content


Search for: All records

Award ID contains: 1705566

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Single‐atom catalysts have demonstrated interesting activity in a variety of applications. In this study, we prepared single Co2+sites on graphitic carbon nitride (C3N4), which was doped with carbon for enhanced activity in visible‐light CO2reduction. The synthesized materials were characterized with a variety of techniques, including microscopy, X‐ray powder diffraction, UV‐vis spectroscopy, infrared spectroscopy, photoluminescence spectroscopy, and X‐ray absorption spectroscopy. Doping C3N4with carbon was found to have profound effect on the photocatalytic activity of the single Co2+sites. At relatively low levels, carbon doping enhanced the photoresponse of C3N4in the visible region and improved charge separation upon photoactivation, thereby enhancing the photocatalytic activity. High levels of carbon doping were found to be detrimental to the photocatalytic activity of the single Co2+sites by altering the structure of C3N4and generating defect sites responsible for charge recombination.

     
    more » « less
  2. Abstract

    Cu‐containing metalloenzymes are known to catalyze oxygen activation through cooperative catalysis. In the current work, we report the design of synthetic polymer Cu catalysts using pyrene‐labelled poly(2‐hydroxy‐3‐dipicolylamino) propyl methacrylate (Py‐PGMADPA) to coordinate multiple Cu sites along polymer chains. The catalysts feature a pyrene end group that can form supramolecular π‐π stacking with conductive carbon to allow efficient immobilization of catalysts to the graphite electrode. Cu‐containing Py‐PGMADPA was examined for electrocatalytic oxygen reduction. The hybrid catalyst showed an onset potential of 0.5 V (vs. RHE) at pH 7 and 0.79 V at pH 13. The kinetic study indicated that the catalyst had a 2ereduction of oxygen mainly mediated by Cu+centers. We demonstrated the importance of cooperative catalysis among Cu sites which did not exist for other transition metal ions, like Mn2+, Fe2+, Co2+, and Ni2+. The confinement of polymer chains promotes the activity and stabilizes Cu catalysts even at an extremely low Cu loading. The rational design of bioinspired polymer catalysts offers an alternative way to prepare synthetic mimics of metalloenzymes.

     
    more » « less
  3. Abstract

    Smart materials with coupled optical and mechanical responsiveness to external stimuli, as inspired by nature, are of interest for the biomimetic design of the next generation of soft machines and wearable electronics. A tough polymer that shows adaptable and switchable mechanical and fluorescent properties is designed using a fluorescent lanthanide, europium (Eu). The dynamic Eu‐iminodiacetate (IDA) coordination is incorporated to build up the physical cross‐linking network in the polymer film consisting of two interpenetrated networks. Reversible disruption and reformation of Eu‐IDA complexation endow high stiffness, toughness, and stretchability to the polymer elastomer through energy dissipation of dynamic coordination. Water that binds to Eu3+ions shows an interesting impact simultaneously on the mechanical strength and fluorescent emission of the Eu‐containing polymer elastomer. The mechanical states of the polymer, along with the visually optical response through the emission color change of the polymer film, are reversibly switchable with moisture as a stimulus. The coupled response in the mechanical strength and emissive color in one single material is potentially applicable for smart materials requiring an optical readout of their mechanical properties.

     
    more » « less
  4. Abstract

    A colloidal‐amphiphile‐templated growth is developed to synthesize mesoporous complex oxides with highly crystalline frameworks. Organosilane‐containing colloidal templates can convert into thermally stable silica that prevents the overgrowth of crystalline grains and the collapse of the mesoporosity. Using ilmenite CoTiO3as an example, the high crystallinity and the extraordinary thermal stability of its mesoporosity are demonstrated at 800 °C for 48 h under air. This synthetic approach is general and applicable to a series of complex oxides that are not reported with mesoporosity and high crystallinity, such as NiTiO3, FeTiO3, ZnTiO3, Co2TiO4, Zn2TiO4, MgTi2O5, and FeTi2O5. Those novel materials make it possible to build up correlations between mesoscale porosity and surface‐sensitive physicochemical properties, e.g., electromagnetic response. For mesoporous CoTiO3, there is a 3 K increase of its antiferromagnetic ordering temperature, compared with that of nonporous one. This finding provides a general guideline to design mesoporous complex oxides that allow exploring their unique properties different from bulk materials.

     
    more » « less
  5. Abstract

    New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(N,N‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required.

     
    more » « less
  6. Abstract We report the synthesis of ordered mesoporous ceria ( m CeO 2 ) with highly crystallinity and thermal stability using hybrid polymer templates consisting of organosilanes. Those organosilane-containing polymers can convert into silica-like nanostructures that further serve as thermally stable and mechanically strong templates to prevent the collapse of mesoporous frameworks during thermal-induced crystallization. Using a simple evaporation-induced self-assembly process, control of the interaction between templates and metal precursors allows the co-self-assembly of polymer micelles and Ce 3+ ions to form uniform porous structures. The porosity is well-retained after calcination up to 900 °C. After the thermal engineering at 700 °C for 12 h ( m CeO 2 -700-12 h), m CeO 2 still has a specific surface area of 96 m 2 g −1 with a pore size of 14 nm. m CeO 2 is demonstrated to be active for electrochemical oxidation of sulfite. m CeO 2 -700-12 h with a perfect balance of crystallinity and porosity shows the fastest intrinsic activity that is about 84 times more active than bulk CeO 2 and 5 times more active than m CeO 2 that has a lower crystallinity. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)