skip to main content


Search for: All records

Award ID contains: 1706039

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Directed high-speed motion of nanoscale objects in fluids can have a wide range of applications like molecular machinery, nano robotics, and material assembly. Here, we report ballistic plasmonic Au nanoparticle (NP) swimmers with unprecedented speeds (~336,000 μm s−1) realized by not only optical pushing but also pulling forces from a single Gaussian laser beam. Both the optical pulling and high speeds are made possible by a unique NP-laser interaction. The Au NP excited by the laser at the surface plasmon resonance peak can generate a nanoscale bubble, which can encapsulate the NP (i.e., supercavitation) to create a virtually frictionless environment for it to move, like the Leidenfrost effect. Certain NP-in-bubble configurations can lead to the optical pulling of NP against the photon stream. The demonstrated ultra-fast, light-driven NP movement may benefit a wide range of nano- and bio-applications and provide new insights to the field of optical pulling force.

     
    more » « less
  2. Abstract

    Functionalized nanoparticles (NPs) are the foundation of diverse applications. Especially, in many biosensing applications, concentrating suspended NPs onto a surface without deteriorating their biofunction is usually an inevitable step to improve detection limit, which remains to be a great challenge. In this work, biocompatible deposition of functionalized NPs to optically transparent surfaces is demonstrated using shrinking bubbles. Leveraging the shrinking phase of bubble mitigates the biomolecule degradation problems encountered in traditional photothermal deposition techniques. The deposited NPs are closely packed, and the functional molecules are able to survive the process as verified by their strong fluorescence signals. Using high‐speed videography, it is revealed that the contracting contact line of the shrinking bubble forces the NPs captured by the contact line to a highly concentrated island. Such shrinking surface bubble deposition (SSBD) is low temperature in nature as no heat is added during the process. Using a hairpin DNA‐functionalized gold NP suspension as a model system, SSBD is shown to enable much stronger fluorescence signal compared to the optical‐pressure deposition and the conventional thermal bubble contact line deposition. The demonstrated SSBD technique capable of directly depositing functionalized NPs may significantly simplify biosensor fabrication and thus benefit a wide range of relevant applications.

     
    more » « less
  3. Optical pulling force (OPF) can make a nanoparticle (NP) move against the propagation direction of the incident light. Long-distance optical pulling is highly desired for nano-object manipulation, but its realization remains challenging. We propose an NP-in-cavity structure that can be pulled by a single plane wave to travel long distances when the spherical cavity wrapping the NP has a refractive index lower than the medium. An electromagnetic multipole analysis shows that NPs made of many common materials can receive the OPF inside a lower index cavity. Using a silica-Au core-shell NP that is encapsulated by a plasmonic nanobubble, we experimentally demonstrate that a single laser can pull the Au NP-in-nanobubble structure for ~0.1 mm. These results may lead to practical applications that can use the optical pulling of NP, such as optically driven nanostructure assembly and nanoswimmers. 
    more » « less