skip to main content


Search for: All records

Award ID contains: 1706777

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fire retardant coatings have been proven effective at reducing the heat release rate (HRR) of structural materials during burning; yet effective methods for increasing the ignition temperature and delay time prior to burning are rarely reported. Herein, a strong, fire‐resistant wood structural material is developed by combining a densification treatment with an anisotropic thermally conductive flame‐retardant coating of hexagonal boron nitride (h‐BN) nanosheets to produce BN‐densified wood. The thermal management properties created by the BN coating provide fast, in‐plane thermal diffusion, slowing the conduction of heat through the densified wood, which improves the material's ignition properties. Compared with densified wood without the BN coating, a 41 °C enhancement in ignition temperature (Tig), a twofold increase in ignition delay time (tig), and a 25% decrease in the maximum HRR of BN‐densified wood can be achieved. As a proof of concept for scalability, the pieces of the BN‐densified wood are fabricated with a length larger than 25 cm, width greater than 15 cm, and thickness more than 7 mm. The improved thermal management, fire resistance, mechanical strength, and scalable production of BN‐densified wood position it as a promising structural material for safe and energy‐efficient buildings.

     
    more » « less
  2. Abstract One of the major challenges in the development of micro-combustors is heat losses that result in flame quenching, and reduced combustion efficiency and performance. In this work, a novel thermal barrier coating (TBC) using hexagonal boron nitride (h-BN) nanosheets as building blocks was developed and applied to a Swiss roll micro-combustor for determining its heat losses with increased temperatures inside the combustor that contributes to improved performance. It was found that by using the h-BN TBC, the combustion temperature of the micro-combustor increased from 850 K to 970 K under the same thermal loading and operational conditions. This remarkable temperature increase using the BN TBC originated from its low cross-plane thermal conductivity of 0.4 W m−1 K−1to mitigate the heat loss from the micro-combustor plates. Such a low thermal conductivity in the h-BN TBC is attributed to its interfacial resistance between the nanosheets. The development of h-BN TBC provides an effective approach to improve thermal management for performance improvements of gas turbine engines, rocket engines, and all various kinds of micro-combustors. 
    more » « less