Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ferroelectric domain walls (DWs) are nanoscale topological defects that can be easily tailored to create nanoscale devices. Their excitations, recently discovered to be responsible for GHz DW conductivity, hold promise for faster signal transmission and processing compared to the existing technology. Here we find that DW phonons have unprecedented dispersion going from GHz all the way to THz frequencies, and resulting in a surprisingly broad GHz signature in DW conductivity. Puzzling activation of nominally forbidden DW sliding modes in BiFeO3is traced back to DW tilting and resulting asymmetry in wall-localized phonons. The obtained phonon spectra and selection rules are used to simulate scanning impedance microscopy, emerging as a powerful probe in nanophononics. The results will guide the experimental discovery of the predicted phonon branches and design of DW-based nanodevices operating in the technologically important frequency range.more » « less
-
Abstract Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories. Recently, it has been shown that inversion-symmetric defects in diamond, such as the negatively charged silicon vacancy center (SiV), feature spin qubits that are highly susceptible to strain. Here, we leverage this strain response to achieve coherent and low-power acoustic control of a single SiV spin, and perform acoustically driven Ramsey interferometry of a single spin. Our results demonstrate an efficient method of spin control for these systems, offering a path towards strong spin-phonon coupling and phonon-mediated hybrid quantum systems.more » « less
-
Abstract Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high‐speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 103S m−1is observed in certain BiFeO3DWs, which is about 100 000 times greater than the carrier‐induced direct current (dc) conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the alternating current (ac) conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out‐of‐plane microwave fields and induce power dissipation, which is confirmed by the phase‐field modeling. Since the contributions from mobile‐carrier conduction and bound‐charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano‐devices for radio‐frequency applications.more » « less
-
Understanding the nanoscale electrodynamic properties of a material at microwave frequencies is of great interest for materials science, condensed matter physics, device engineering, and biology. With specialized probes, sensitive detection electronics, and improved scanning platforms, microwave microscopy has become an important tool for cutting-edge materials research in the past decade. In this article, we review the basic components and data interpretation of microwave imaging and its broad range of applications. In addition to the general-purpose mapping of permittivity and conductivity, microwave microscopy is now exploited to perform quantitative measurements on semiconductor devices, photosensitive materials, ferroelectric domains and domain walls, and acoustic-wave systems. Implementation of the technique in low-temperature and high-magnetic-field chambers has also led to major discoveries in quantum materials with strong correlation and topological order. We conclude the review with an outlook of the ultimate resolution, operation frequency, and future industrial and academic applications of near-field microwave microscopy. Expected final online publication date for the Annual Review of Materials Research, Volume 50 is July 1, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
An official website of the United States government
