Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Although many rod‐packing metal‐organic frameworks are known, few are based on ordered heterometallic rod building unit. We show here the synthesis of CPM‐76 based on an unprecedented Zn‐Mg bimetallic rod with crystallographically distinguishable metal sites. The configuration of the rod offers two types of coordination site with trigonal bipyramidal and octahedral sites selectively occupied by Zn and Mg, respectively. Also unusual is the inter‐connection mode between the rods, which is based on dual‐charged forms (−3 and −2) of the 2‐hydroxyterephthalic acid (H3OBDC) ligand. Interestingly, each metal site in CPM‐76 binds one solvent molecule, leading to a high density of solvent binding sites.more » « less
-
Abstract For rare‐earth separation, selective crystallization into metal‐organic frameworks (MOFs) offers new opportunities. Especially important is the development of MOF platforms with high selectivity toward target ions. Here we report a MOF platform (CPM‐66) with low‐coordination‐number environment for rare‐earth ions. This platform is highly responsive to the size variation of rare‐earth ions and shows exceptional ion‐size selectivity during crystallization. CPM‐66 family are based on M3O trimers (M=6‐coordinated Sc, In, Er‐Lu) that are rare for lanthanides. We show that the size matching between urea‐type solvents and metal ions is crucial for their successful synthesis. We further show that CPM‐66 enables a dramatic multi‐fold increase in separation efficiency over CPM‐29 with 7‐coordinated ions. This work provides some insights into methods to prepare low‐coordinate MOFs from large ions and such MOFs could serve as high‐efficiency platforms for lanthanide separation, as well as other applications.more » « less
-
Abstract While many metal oxalate salts are known, few are known to form zeolite‐type topologies. The construction of zeolite types, especially those with low framework density such as RHO, from linear ligands is generally perceived as less likely, because the 180° metal‐ligand‐metal geometry deviates too much from the established strategy of using ligands with bent coordination geometry (centered around 145°) to mimic the geometry in natural zeolites. We show the general feasibility of using linear ligands for the synthesis of zeolite types by reporting a family of indium oxalate salts with multiple zeolite topologies, including RHO, GIS, and ABW. Of particular interest is the synthesis of a zeolite RHO net with double 8‐rings and large alpha cages, which are highly desirable zeolite features.more » « less
An official website of the United States government
