skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1709084

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Raman spectroscopy provides label‐free, specific analysis of biomolecular structure and interactions. It could have a greater impact with improved characterization of complex fingerprint vibrations. Many Raman peaks have been assigned to cholesterol, for example, but the molecular vibrations associated with those peaks are not known. In this report, time‐dependent density functional theory calculations of the Raman spectrum of cholesterol are compared to measurements on microcrystalline powder to identify 23 peaks in the Raman spectrum. Among them, a band of six peaks is found to be sensitive to the conformational structure of cholesterol's iso‐octyl chain. Calculations on 10 conformers in this spectral band are fit to experimental spectra to probe the cholesterol chain structure in purified powder and in phospholipid vesicles. In vesicles, the chain is found to bend perpendicular to the steroid rings, supporting the case that the chain is a dynamic structure that contributes to lipid condensation and other effects of cholesterol in biomembranes. Statement of Significance: Here we use density functional theory to identify a band of six peaks in cholesterol's Raman spectrum that is sensitive to the conformational structure of cholesterol's chain. Raman spectra were analyzed to show that in fluid‐phase lipid membranes, about half of the cholesterol chains point perpendicular to the steroid rings. This new method of label‐free structural analysis could make significant contributions to our understanding of cholesterol's critical role in biomembrane structure and function. More broadly, the results show that computational quantum chemistry Raman spectroscopy can make significant new contributions to molecular structure when spectra are interpreted with computational quantum chemistry. 
    more » « less
  2. The detection and analysis of flavonoids by Raman spectroscopy are of interest in many fields, including medicinal chemistry, food science, and astrobiology. Spectral interpretation would benefit from better identification of the fingerprint vibrational peaks of different flavonoids and how they are affected by intermolecular interactions. The Raman spectra of two flavonoids, flavone and quercetin, were investigated through comparisons between spectra recorded from pure powders and spectra calculated with time dependent density functional theory (TDDFT). For both flavone and quercetin, 17 peaks were assigned to specific molecular vibrations. Both flavonoids were found to have a split peak between 1250 – 1350 cm-1 that is not predicted by TDDFT calculations on isolated molecules. In each case, it is shown that the addition of hydrogen bonded molecules arranged based on crystal structures reproduce the split peaks. These peaks were due to a stretching vibration of the bond between the benzopyrone and phenyl rings and represent a characteristic spectral feature of the flavonoids. Spectra of pollen grains from Quercus virginiana were also recorded and exhibit several peaks that correspond to the quercetin spectrum. 
    more » « less
  3. null (Ed.)
    Due to their well-defined plasmonic properties, gold nanorods (GNRs) can be fabricated with optimal light absorption in the near-infrared region of the electromagnetic spectrum, which make them suitable for cancer-related theranostic applications. However, their controversial safety profile, as a result of surfactant stabilization during synthesis, limits their clinical translation. We report a facile method to improve GNR biocompatibility through the presence of sodium dodecyl sulfate (SDS). GNRs (120 × 40 nm) were synthesized through a seed-mediated approach, using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant to direct the growth of nanorods and stabilize the particles. Post-synthesis, SDS was used as an exchange ligand to modify the net surface charge of the particles from positive to negative while maintaining rod stability in an aqueous environment. GNR cytotoxic effects, as well as the mechanisms of their cellular uptake, were examined in two different cancer cell lines, Lewis lung carcinoma (LLC) and HeLa cells. We not only found a significant dose-dependent effect of GNR treatment on cell viability but also a time-dependent effect of GNR surfactant charge on cytotoxicity over the two cell lines. Our results promote a better understanding of how we can mediate the undesired consequences of GNR synthesis byproducts when exposed to a living organism, which so far has limited GNR use in cancer theranostics. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Surface-enhanced Raman scattering (SERS) from gold and silver nanoparticles suspended in solution enables a more quantitative level of analysis relative to SERS from aggregated nanoparticles and roughened metal substrates. This is due to the more predictable and consistent near field enhancement regions created by isolated nanoparticles, and to averaging over the many nanoparticles that diffuse through the excitation beam during the measurement. However, we find that localized heating of the solution by the focused excitation leads to thermophoresis which alters the nanorod concentration in the focal volume and therefore impacts quantitative analysis. Since many phenomena may impact the Raman signal, we record both the Rayleigh and Raman scattering from gold nanoparticle solutions. This allows us to distinguish molecular processes from depletion of nanoparticles in the excitation beam. We observe that the concentration of nanorods can deplete to less than 50% of its original value over 100 second timescale, which are consistent with a thermophoretic effect driving nanoparticles from the beam spot. We also find that the particle motion drives convection within the sample cell that further contributes to signal instabilities. 
    more » « less