skip to main content


Title: The Raman Active Vibrations of Flavone and Quercetin: The Impact of Conformers and Hydrogen Bonding on Fingerprint Modes
The detection and analysis of flavonoids by Raman spectroscopy are of interest in many fields, including medicinal chemistry, food science, and astrobiology. Spectral interpretation would benefit from better identification of the fingerprint vibrational peaks of different flavonoids and how they are affected by intermolecular interactions. The Raman spectra of two flavonoids, flavone and quercetin, were investigated through comparisons between spectra recorded from pure powders and spectra calculated with time dependent density functional theory (TDDFT). For both flavone and quercetin, 17 peaks were assigned to specific molecular vibrations. Both flavonoids were found to have a split peak between 1250 – 1350 cm-1 that is not predicted by TDDFT calculations on isolated molecules. In each case, it is shown that the addition of hydrogen bonded molecules arranged based on crystal structures reproduce the split peaks. These peaks were due to a stretching vibration of the bond between the benzopyrone and phenyl rings and represent a characteristic spectral feature of the flavonoids. Spectra of pollen grains from Quercus virginiana were also recorded and exhibit several peaks that correspond to the quercetin spectrum.  more » « less
Award ID(s):
1709084
NSF-PAR ID:
10490732
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
127
Issue:
6
ISSN:
1089-5639
Page Range / eLocation ID:
1387 to 1394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-dimensional infrared (2DIR) spectroscopy has become an established method for generating vibrational spectra in condensed phase samples composed of mixtures that yield heavily congested infrared and Raman spectra. These condensed phase 2DIR spectrometers can provide very high temporal resolution (<1 ps), but the spectral resolution is generally insufficient for resolving rotational peaks in gas phase spectra. Conventional (1D) rovibrational spectra of gas phase molecules are often plagued by severe spectral congestion, even when the sample is not a mixture. Spectral congestion can obscure the patterns in rovibrational spectra that are needed to assign peaks in the spectra. A method for generating high resolution 2DIR spectra of gas phase molecules has now been developed and tested using methane as the sample. The 2D rovibrational patterns that are recorded resemble an asterisk with a center position that provides the frequencies of both of the two coupled vibrational levels. The ability to generate easily recognizable 2D rovibrational patterns, regardless of temperature, should make the technique useful for a wide range of applications that are otherwise difficult or impossible when using conventional 1D rovibrational spectroscopy.

     
    more » « less
  2. Quercetin, one of the major natural flavonoids, has demonstrated great pharmacological potential as an antioxidant and in overcoming drug resistance. However, its low aqueous solubility and poor stability limit its potential applications. Previous studies suggest that the formation of quercetin-metal complexes could increase quercetin stability and biological activity. In this paper, we systematically investigated the formation of quercetin-iron complex nanoparticles by varying the ligand-to-metal ratios with the goal of increasing the aqueous solubility and stability of quercetin. It was found that quercetin-iron complex nanoparticles could be reproducibly synthesized with several ligand-to-iron ratios at room temperature. The UV-Vis spectra of the nanoparticles indicated that nanoparticle formation greatly increased the stability and solubility of quercetin. Compared to free quercetin, the quercetin-iron complex nanoparticles exhibited enhanced antioxidant activities and elongated effects. Our preliminary cellular evaluation suggests that these nanoparticles had minimal cytotoxicity and could effectively block the efflux pump of cells, indicating their potential for cancer treatment. 
    more » « less
  3. Abstract

    Raman spectroscopy provides label‐free, specific analysis of biomolecular structure and interactions. It could have a greater impact with improved characterization of complex fingerprint vibrations. Many Raman peaks have been assigned to cholesterol, for example, but the molecular vibrations associated with those peaks are not known. In this report, time‐dependent density functional theory calculations of the Raman spectrum of cholesterol are compared to measurements on microcrystalline powder to identify 23 peaks in the Raman spectrum. Among them, a band of six peaks is found to be sensitive to the conformational structure of cholesterol's iso‐octyl chain. Calculations on 10 conformers in this spectral band are fit to experimental spectra to probe the cholesterol chain structure in purified powder and in phospholipid vesicles. In vesicles, the chain is found to bend perpendicular to the steroid rings, supporting the case that the chain is a dynamic structure that contributes to lipid condensation and other effects of cholesterol in biomembranes.

    Statement of Significance: Here we use density functional theory to identify a band of six peaks in cholesterol's Raman spectrum that is sensitive to the conformational structure of cholesterol's chain. Raman spectra were analyzed to show that in fluid‐phase lipid membranes, about half of the cholesterol chains point perpendicular to the steroid rings. This new method of label‐free structural analysis could make significant contributions to our understanding of cholesterol's critical role in biomembrane structure and function. More broadly, the results show that computational quantum chemistry Raman spectroscopy can make significant new contributions to molecular structure when spectra are interpreted with computational quantum chemistry.

     
    more » « less
  4. SUMMARY

    Flavonoids are a well‐known class of specialized metabolites that play key roles in plant development, reproduction, and survival. Flavonoids are also of considerable interest from the perspective of human health, as both phytonutrients and pharmaceuticals. RNA sequencing analysis of an Arabidopsis null allele for chalcone synthase (CHS), which catalyzes the first step in flavonoid metabolism, has uncovered evidence that these compounds influence the expression of genes associated with the plant circadian clock. Analysis of promoter‐luciferase constructs further showed that the transcriptional activity ofCCA1andTOC1, two key clock genes, is altered in CHS‐deficient seedlings across the day/night cycle. Similar findings for a mutant line lacking flavonoid 3′‐hydroxylase (F3′H) activity, and thus able to synthesize mono‐ but not dihydroxylated B‐ring flavonoids, suggests that the latter are at least partially responsible; this was further supported by the ability of quercetin to enhanceCCA1promoter activity in wild‐type and CHS‐deficient seedlings. The effects of flavonoids on circadian function were also reflected in photosynthetic activity, with chlorophyll cycling abolished in CHS‐ and F3′H‐deficient plants. Remarkably, the same phenotype was exhibited by plants with artificially high flavonoid levels, indicating that neither the antioxidant potential nor the light‐screening properties of flavonoids contribute to optimal clock function, as has recently also been demonstrated in animal systems. Collectively, the current experiments point to a previously unknown connection between flavonoids and circadian cycling in plants and open the way to better understanding of the molecular basis of flavonoid action.

     
    more » « less
  5. Abstract

    We report the results of polarization‐dependent Raman spectroscopy of phonon states in single‐crystalline quasi‐one‐dimensional NbTe4and TaTe4van der Waals materials. The measurements were conducted in the wide temperature range from 80 to 560 K. Our results show that although both materials have identical crystal structures and symmetries, there is a drastic difference in the intensity of their Raman spectra. While TaTe4exhibits well‐defined peaks through the examined wavenumber and temperature ranges, NbTe4reveals extremely weak Raman signatures. The measured spectral positions of the phonon peaks agree with the phonon band structure calculated using the density‐functional theory. We offer possible reasons for the intensity differences between the two van der Waals materials. Our results provide insights into the phonon properties of NbTe4and TaTe4van der Waals materials and indicate the potential of Raman spectroscopy for studying charge‐density‐wave quantum condensate phases.

     
    more » « less