skip to main content


Search for: All records

Award ID contains: 1709278

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Course‐based Undergraduate Research Experiences (CUREs) can be a very effective means to introduce a large number of students to research. CUREs are often an extension of the instructor's research, which may make them difficult to replicate in other settings because of differences in expertise or facilities. The BASIL (Biochemistry Authentic Scientific Inquiry Lab) CURE has evolved over the past 4 years as faculty members with different backgrounds, facilities, and campus cultures have all contributed to a robust curriculum focusing on enzyme function prediction that is suitable for implementation in a wide variety of academic settings. © 2019 International Union of Biochemistry and Molecular Biology, 47(5):498–505, 2019.

     
    more » « less
  2. Abstract

    Understanding the molecular evolution of the SARS‐CoV‐2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three‐dimensional structures of SARS‐CoV‐2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID‐19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein–protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi‐Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein–protein and protein–nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure‐based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.

     
    more » « less
  3. Campus shutdowns during the SARS-CoV2 pandemic posed unique challenges to faculty and students engaged in laboratory courses. Formerly hands-on experiments had to be quickly pivoted to emergency remote learning. While some resources existed prior to this period, many currently available online modules and/or simulations focus on a single technique. The Biochemistry Authentic Scientific Inquiry Lab (BASIL) curriculum has, for several years, provided a robust, linked, holistic inquiry experience that allows students to make connections between multiple techniques, both computational in nature as well as wet-lab based. As a Course-based Undergraduate Research Experience (CURE), this flexible, module-based curriculum allows students to generate original hypotheses based on analysis of proteins of unknown function. We have taught this curriculum as the upper-level laboratory course on our campuses and were obliged to transition to remote instruction at various points in the course sequence. We report on the experiences of faculty and students over the transition period in this course. Additionally, we report as a case study results of one of our campus’ ongoing discipline-based education research (DBER) on the BASIL curriculum prior to and during remote delivery. 
    more » « less
  4. Students at the Rochester Institute of Technology and Dowling College used bioinformatics software, which they had helped develop, to predict the function of protein structures whose functions had not been assigned or confirmed. Over the course of time, they incorporated other bioinformatics tools and moved the project to the wet lab, where they sought to confirm their in silico predictions with in vitro assays. In this process, we saw so much personal and professional growth among our students that we chose to implement their approach in an undergraduate biochemistry teaching lab, which we call BASIL, for Biochemistry Authentic Scientific Inquiry Lab. This curriculum has now been implemented by thirteen faculty members on eight campuses, and we look forward to a long-range exploration of BASIL’s impact on the students who enroll in courses that use the BASIL curriculum. 
    more » « less
  5. Most undergraduates studying biochemistry and molecular biology get their broadest exposure to wet-lab techniques in protein and nucleic acid chemistry (and, increasingly, computer/visualization) in their upper-level laboratory courses. These tend to be juniors and seniors with well-defined career goals. Some of these students will have already have a research background in a traditional one-to-one (or one-to-few) research mentoring setting, for example a summer research program. This approach has proved effective at increasing student learning and persistence in the sciences. At the same time, extended full-time PI-directed research is limited in the number of students served, and can even present a barrier. To broaden the impact of teaching through research, many practitioners have adopted a CURE, or Course-based Undergraduate Research Experience, approach.This presentation reports on “BASIL” (Biochemical Authentic Scientific Inquiry Laboratory), a team of faculty who have worked to bring computational and wet-lab protein science to the biochemistry teaching lab. Together, we have developed a protein biochemistry CURE to determine enzymatic function of proteins of unknown activity. This work leverages the results of the Protein Structure Initiative, a fifteen-year NIH-funded effort which concluded in 2015 with the publication and distribution of more than 5000 previously uncharacterized proteins. The great majority of these are “orphans,” with high quality structures and pre-cloned expression plasmids available, but no research on their enzymatic function or role in native organisms. The BASIL consortium of undergraduate biochemistry faculty and students seeks to identify functional properties of a subset of these uncharacterized proteins, seeking to unify structure and function relationships. Currently, implementable modules are available for faculty who wish to adopt them, and expected student results will be presented.Support or Funding InformationSupported by NSF IUSE 1709278This abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal. 
    more » « less