skip to main content


Search for: All records

Award ID contains: 1711253

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    With the fast evolution in greenhouse gas (GHG) emissions (e.g., CO2, N2O) caused by fossil fuel combustion and global warming, climate change has been identified as a critical threat to the sustainable development of human society, public health, and the environment. To reduce GHG emissions, besides minimizing waste heat production at the source, an integrated approach should be adopted for waste heat management, namely, waste heat collection and recycling. One solution to enable waste heat capture and conversion into useful energy forms (e.g., electricity) is employing solid-state energy converters, such as thermoelectric generators (TEGs). The simplicity of thermoelectric generators enables them to be applied in various industries, specifically those that generate heat as the primary waste product at a temperature of several hundred degrees. Nevertheless, thermoelectric generators can be used over a broad range of temperatures for various applications; for example, at low temperatures for human body heat harvesting, at mid-temperature for automobile exhaust recovery systems, and at high temperatures for cement industries, concentrated solar heat exchangers, or NASA exploration rovers. We present the trends in the development of thermoelectric devices used for thermal management and waste heat recovery. In addition, a brief account is presented on the scientific development of TE materials with the various approaches implemented to improve the conversion efficiency of thermoelectric compounds through manipulation of Figure of Merit, a unitless factor indicative of TE conversion efficiency. Finally, as a case study, work on waste heat recovery from rotary cement kiln reactors is evaluated and discussed. 
    more » « less
  3.  
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6.  
    more » « less
  7. Silver nanogratings are anisotropic plasmonic nanostructures with potential application in optical components due to their large birefringence and dichroism. We induced linear birefringence and linear dichroism in subwavelength Ag-AgCl films by irradiating with a single low-power linearly polarized laser beam. The laser beam aligns silver nanoparticles in the direction of laser polarization and forms nanograting. We used Stokes parameters to determine linear birefringence and linear dichroism in silver aligned nanostructures. The values of linear dichroism and linear birefringence in silver nanogratings are controllable through manipulating the spatial period of nanogratings. The dispersion characteristic of dichroism and birefringence is also investigated.

     
    more » « less