Hierarchically microstructured tri-axial poly(vinyl alcohol)/graphene nanoplatelet (PVA/GNP) composite fibers were fabricated using a dry-jet wet spinning technique. The composites with distinct PVA/GNPs/PVA phases led to highly oriented and evenly distributed graphene nanoplatelets (GNPs) as a result of molecular chain-assisted interfacial exfoliation. With a concentration of 3.3 wt% continuously aligned GNPs, the composite achieved a ∼73.5% increase in Young's modulus (∼38 GPa), as compared to the pure PVA fiber, and an electrical conductivity of ∼0.38 S m −1 , one of the best mechanical/electrical properties reported for polymer/GNP nanocomposite fibers. This study has broader impacts on textile engineering, wearable robotics, smart sensors, and optoelectronic devices. 
                        more » 
                        « less   
                    
                            
                            Thermoelectric, Magnetic, and Mechanical Characteristics of Antiferromagnetic Manganese Telluride Reinforced with Graphene Nanoplates
                        
                    
    
            Mechanical and thermal stability are the two challenging aspects of thermoelectric compounds and modules. Microcrack formation during material synthesis and mechanical failure under thermo‐mechanical loading is commonly observed in thermoelectric materials made from brittle semiconductors. Herein, the results of graphene‐nanoplates (GNPs) reinforcement on the mechanical and thermoelectric properties of MnTe compound are reported. The binary antiferromagnetic MnTe shown promising thermoelectric characteristics due to the paramagnon–hole drag above the Néel temperature. In this study, different bulk MnTe samples are synthesized with the addition of GNPs in a small quantity (0.25–1 wt%) by powder metallurgy and spark plasma sintering. The thermoelectric factors, magnetic behavior, microstructure, and mechanical properties of the samples are evaluated and analyzed. Nearly 33% improvement is observed in the fracture toughness of MnTe reinforced with 0.25 wt% GNPs compared to the pristine structure. The Néel temperature remains approximately unaffected with the GNP inclusion; however, the low‐temperature ferromagnetic phase impurity is significantly suppressed. The thermal conductivity and power factor decrease almost equally by ≈34% at 600 K; hence, the thermoelectric figure‐of‐merit is not affected by GNP reinforcement in the optimized sample. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1711253
- PAR ID:
- 10254505
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 23
- Issue:
- 2
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Néel temperature ( T N ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes α md to the thermopower, which scales as ~ T 3 . Magnon drag persists into the paramagnetic state up to >3 × T N because of long-lived, short-range antiferromagnet-like fluctuations (paramagnons) shown by neutron spectroscopy to exist in the paramagnetic state. The paramagnon lifetime is longer than the charge carrier–magnon interaction time; its spin-spin spatial correlation length is larger than the free-carrier effective Bohr radius and de Broglie wavelength. Thus, to itinerant carriers, paramagnons look like magnons and give a paramagnon-drag thermopower. This contribution results in an optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectric energy conversion efficiency from a spin-caloritronic effect.more » « less
- 
            The algae-derived bio-binder (ADBB) from hydrothermal liquefaction has been reported to be an effective and sustainable new alternative to petroleum-based curing agents for epoxy resin. However, there is still room for the epoxy/ADBB system to attain the comprehensive mechanical performance of conventional epoxy-based nanocomposites, typically reinforced with surface-functionalized nanofillers (e.g., glass nanoparticles (GNPs)) by petroleum-based silane coupling agents. Herein, we explored the use of ADBB as an innovative surface-modifying agent to functionalize GNPs and evaluated the potential of ADBB surface-functionalized GNPs (ADBB-GNPs) as a reinforcing agent in the epoxy/ADBB matrix nanocomposite by comparing them to pristine GNPs and (3-aminopropyl) triethoxysilane (APTES) (a popular silane coupling agent) surface-modified GNPs (APTES-GNPs). The surface functionalization of GNPs with ADBB was carried out and characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). Material performance including tensile, flexural, and Izod impact properties and thermal properties of the resulting epoxy/ADBB nanocomposites were investigated by corresponding ASTM mechanical test standards and thermogravimetric analysis (TGA). Our results revealed that the ADBB is a sustainable and effective surface-modifying agent that can functionalize GNPs. The obtained ADBB-GNPs significantly improved the mechanical performance of the epoxy/ADBB system at ultra-low loading (0.5 wt.%) by up to 42% and the maximum decomposition rate temperature increased from 419 °C to 422 °C, both of which outperformed APTES-GNPs. This research sheds light on developing sustainable surface-modifying agents for nanofillers to create high-performance sustainable polymer composite materials.more » « less
- 
            Doping can alter certain electronics, including the thermoelectric properties of an organic semiconductor. These alterations may enable viable tunable devices that could be useful in temperature sensing for autonomous controls. Here, we demonstrate a dual-modulation organic field-effect transistor (OFET) where temperature can modulate the current-voltage characteristics of the OFET and gate voltage can modulate the thermoelectric properties of the active layer in the same device. Specifically, Poly(3-hexylthiophene-2,5-diyl) (P3HT) was utilized as the host p-type semiconducting polymer, and iodine was utilized as the thermoelectric minority dopant. The finished devices were characterized with a semiconductor analyzer system with temperature controlled using two thermoelectric cooling plates. The FETs with iodine doping levels in the range of 0.25% to 0.5% mole ratio with respect to the P3HT exhibit the greatest on/off ratios. This study also observed that P3HT thin film samples with an intermediate iodine doping concentration of 0.25% mole ratio exhibit an optimal thermoelectric power factor (PF).more » « less
- 
            Abstract Boron nitride nanotubes (BNNTs) are the perfect candidate for nanofillers in high-temperature multifunctional ceramics due to their high thermal stability, oxidation resistance, good mechanical properties, high thermal conductivity, and radiation shielding. In this paper, 3D printed ceramic nanocomposite with 0.1 wt% of BNNT was prepared by fusing it at high temperatures. Samples were built with three different print directions to study the effect of print layers on mechanical performance along with BNNT addition. Dynamic mechanical analysis is performed to study the length effect of nanoscale reinforcements on the mechanical properties of the printed ceramic composites reporting significant improvements up to 55% in bending strength and 72% in bending modulus with just 0.1 wt% BNNT addition. A 63% thermal diffusivity improvement of ceramic by adding BNNTs is observed using laser flash analysis. The bridging and pull-out effect of nanotubes with a longer aspect ratio was observed with high-resolution microscopy. Such composites’ modeling and simulation approaches are crucial for virtual testing and industrial applications. Understanding the effect of nanoscale synthetic fillers for 3D printed high-temperature ceramics can revolutionize future extreme environment structures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
