skip to main content


Search for: All records

Award ID contains: 1711402

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Biochemistry curricula present a particular challenge to undergraduate students with abstract concepts which can lead to misconceptions that impede learning. In particular, these students have difficulty understanding enzyme structure and function concepts. Targeted learning activities and three‐dimensional (3D) physical models are proposed to help students challenge these misconceptions and increase conceptual understanding. Here we assessed such pedagogical tools using the Enzyme‐Substrate Interactions Concept Inventory (ESICI) to measure (mis)conceptual changes from Pre‐ to Post‐ time points in a single semester undergraduate biochemistry course. A Control group of students engaged with the active learning activities without the 3D physical models and students in the Intervention group utilized these activities with the 3D physical models. At the Post‐ time point both groups had higher, yet similar ESICI scores of the same magnitude as the highest scoring group from the national sample. Concomitantly, many misconception markers decreased compared to the national sample, although some of these differed between the Control and Intervention groups. Based on this assessment, both pedagogical approaches successfully increased conceptual understanding and targeted many of the misconceptions measured by the ESICI, however, several misconceptions persisted. Surprisingly, the students who used the 3D physical models did not demonstrate a further decrease in the misconception markers. Additionally, psychometric evaluation of the ESICI with our sample recommends the revision of several questions to improve the validity of this assessment. We also offer suggestions to improve instruction and pedagogical tools with further avenues for research on learning.

     
    more » « less
  2. From the perspective of a novice student, the molecular biosciences are inherently invisible. A challenge facing bioscience educators is to help students create detailed mental models of the biomolecules that make up a living cell and how they all work together to support life. With the advancement of rapid-prototyping, also known as 3D (three dimensional)-printing, physical models of biomolecules are entering undergraduate classrooms as tools to aid in constructing mental models of biological phenomena at the molecular-level.This relatively new pedagogical tool requires evidence-based practices for optimal use in aiding student conceptual and visual development.This chapter presents current evidence for the use of physical models as learning tools, while also introducing case studies on how physical models of biomolecules are designed and assessed in undergraduate molecular bioscience settings. 
    more » « less