skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aiming for the Bullseye : Targeted activities decrease misconceptions related to enzyme function for undergraduate biochemistry students
Abstract Biochemistry curricula present a particular challenge to undergraduate students with abstract concepts which can lead to misconceptions that impede learning. In particular, these students have difficulty understanding enzyme structure and function concepts. Targeted learning activities and three‐dimensional (3D) physical models are proposed to help students challenge these misconceptions and increase conceptual understanding. Here we assessed such pedagogical tools using the Enzyme‐Substrate Interactions Concept Inventory (ESICI) to measure (mis)conceptual changes from Pre‐ to Post‐ time points in a single semester undergraduate biochemistry course. A Control group of students engaged with the active learning activities without the 3D physical models and students in the Intervention group utilized these activities with the 3D physical models. At the Post‐ time point both groups had higher, yet similar ESICI scores of the same magnitude as the highest scoring group from the national sample. Concomitantly, many misconception markers decreased compared to the national sample, although some of these differed between the Control and Intervention groups. Based on this assessment, both pedagogical approaches successfully increased conceptual understanding and targeted many of the misconceptions measured by the ESICI, however, several misconceptions persisted. Surprisingly, the students who used the 3D physical models did not demonstrate a further decrease in the misconception markers. Additionally, psychometric evaluation of the ESICI with our sample recommends the revision of several questions to improve the validity of this assessment. We also offer suggestions to improve instruction and pedagogical tools with further avenues for research on learning.  more » « less
Award ID(s):
1711402
PAR ID:
10359899
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biochemistry and Molecular Biology Education
Volume:
49
Issue:
6
ISSN:
1470-8175
Page Range / eLocation ID:
p. 904-916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Introductory biochemistry courses are often challenging for students because they require the integration of chemistry, biology, physics, math, and physiology knowledge and frameworks to understand and apply a large body of knowledge. This can be complicated by students' persistent misconceptions of fundamental concepts and lack of fluency with the extensive visual and symbolic literacy used in biochemistry. Card sorting tasks and game‐based activities have been used to reveal insights into how students are assimilating, organizing, and structuring disciplinary knowledge, and how they are progressing along a continuum from disciplinary novice to expert. In this study, game‐based activities and card sorting tasks were used to promote and evaluate students' understanding of fundamental structure–function relationships in biochemistry. Our results suggest that while many markers of expertise increased for both the control and intervention groups over the course of the semester, students involved in the intervention activities tended to move further towards expert‐like sorting. This indicates that intentional visual literacy game‐based activities have the ability to build underdeveloped skills in undergraduate students. 
    more » « less
  2. Abstract Recent calls for reform in K‐12 science education and the National Academy of Engineering's Grand Challenges for Engineering in the 21st Century emphasize improving science teaching, students' engagement, and learning. In this study, we designed and implemented a curriculum unit for sixth‐grade students (i = 1305). The curriculum unit integrated science and engineering content and practices to teach ecology, water pollution, and engineering design. We investigated the designed integrated STEM unit's effectiveness in students' science learning outcomes on pre‐, post‐, and delayed post‐assessments. We collected pre‐and post‐assessment data of students' science learning outcomes for both the baseline group (taught via existing district‐adopted curriculum) and an intervention group (taught with integrated life science and engineering curriculum). We used a quasi‐experimental research design and examined differences between baseline and intervention groups. We used ANCOVA to explore differences in students' learning in baseline and intervention groups. Furthermore, for students in the intervention group, we conducted repeated‐measures ANOVA to investigate knowledge retention. Our analyses also accounted for students' gender and People of Color (POC) status. We conducted multiple regression analyses to explore the relationship between students' gender, POC status, and their learning outcomes. The results indicated that the intervention group students performed significantly better than the students in the baseline group. The repeated measures ANOVA showed that students in the intervention group retained science knowledge after 8 weeks of instruction. Finally, the regression analysis for the baseline group showed that gender and POC status were not significant predictors of their post‐assessment scores. However, POC status was a significant predictor of post‐assessment scores and knowledge retention for the intervention group. Overall, this study provides valuable findings on how an integrated STEM curriculum designed with engineering design and practices improves students' science learning outcomes. 
    more » « less
  3. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. 
    more » « less
  4. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. 
    more » « less
  5. Fiedler, Daniela (Ed.)
    Previous research has shown that students employ intuitive thinking when understanding scientific concepts. Three types of intuitive thinking—essentialist, teleological, and anthropic thinking—are used in biology learning and can lead to misconceptions. However, it is unknown how commonly these types of intuitive thinking, or cognitive construals, are used spontaneously in students’ explanations across biological concepts and whether this usage is related to endorsement of construal-consistent misconceptions. In this study, we examined how frequently undergraduate students across two U.S. universities ( N = 807) used construal-consistent language (CCL) to explain in response to open-ended questions related to five core biology concepts (e.g., evolution), how CCL use differed by concept, and how this usage was related to misconceptions agreement. We found that the majority of students used some kind of CCL in the responses to these open-ended questions and that CCL use varied by target concept. We also found that students who used CCL in their response agreed more strongly with misconception statements, a relationship driven by anthropocentric language use, or language that focused on humans. These findings suggest that American university students use intuitive thinking when reasoning about biological concepts with implications for their understanding. 
    more » « less