skip to main content


Search for: All records

Award ID contains: 1711564

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems.

    Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life‐history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment).

    To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season.

    In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among‐individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life‐history theory.

    The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late‐produced offspring likely enhances maternal fitness.

     
    more » « less
  2. Abstract Natural history collections (NHCs) are important resources for a diverse array of scientific fields. Recent digitization initiatives have broadened the user base of NHCs, and new technological innovations are using materials generated from collections to address novel scientific questions. Simultaneously, NHCs are increasingly imperiled by reductions in funding and resources. Ensuring that NHCs continue to serve as a valuable resource for future generations will require the scientific community to increase their contribution to and acknowledgement of collections. We provide recommendations and guidelines for scientists to support NHCs, focusing particularly on new users that may be unfamiliar with collections. We hope that this perspective will motivate debate on the future of NHCs and the role of the scientific community in maintaining and improving biological collections. 
    more » « less
  3. Since the invention of electric lighting, artificial light at night (ALAN) has become a defining, and evolutionary novel, feature of human-altered environments especially in cities. ALAN imposes negative impacts on many organisms, including disrupting endocrine function, metabolism, and reproduction. However, we do not know how generalized these impacts are across taxa that exploit urban environments. We exposed brown anole lizards, an abundant and invasive urban exploiter, to relevant levels of ALAN in the laboratory and assessed effects on growth and reproduction at the start of the breeding season. Male and female anoles exposed to ALAN increased growth and did not suffer increased levels of corticosterone. ALAN exposure induced earlier egg-laying, likely by mimicking a longer photoperiod, and increased reproductive output without reducing offspring quality. These increases in growth and reproduction should increase fitness. Anoles, and potentially other taxa, may be resistant to some negative effects of ALAN and able to take advantage of the novel niche space ALAN creates. ALAN and both its negative and positive impacts may play a crucial role in determining which species invade and exploit urban environments. 
    more » « less
  4. Widespread human development has led to the proliferation of artificial light at night, an increasingly recognized but poorly understood component of anthropogenic global change. Animals specialized to diurnal activity are presented opportunities to use this night-light niche, but the ecological consequences are largely unknown. While published records make note of nocturnal activity in a diversity of diurnal taxa, few case studies have gone beyond isolated observations to quantify patterns of nocturnal activity, document animal behavior, and describe new species interactions. From 13 June to 15 July 2017, we conducted hourly nocturnal surveys to assess how two species of diurnal Anolis lizards (Leach’s Anole, Anolis leachii, and Watt’s Anole, A. wattsi) use artificial light on Long Island, Antigua. Our data show that both anole species foraged in artificially illuminated habitats and were more active prior to sunrise compared to the early night. Mark-resight data for a focal species, A. leachii, suggest that patterns of nocturnal activity were not significantly different between individuals. Finally, our behavioral observations for the two anoles and a third lizard species, the nocturnal Thick-tailed Gecko (Thecadactylus rapicauda), reveal a lack of agonistic interactions. Our study reveals an altered temporal niche for two diurnal Antiguan lizards and adds to a growing body of evidence documenting the broad influences of anthropogenic change on biodiversity. 
    more » « less