Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Expanding populations, the impacts of climate change, availability of arable land, and availability of water for irrigation collectively strain the agricultural system. To keep pace and adapt to these challenges, food producers may adopt unsustainable practices that may ultimately intensify the strain. What is a course of technological evolution and adoption that can break this cycle? In this paper we explore a set of technologies and food production scenarios with a new, reduced-order model. First the model is developed. The model combines limitations in the sustainable water supply, agricultural productivity as a function of intensification, and rising food demands. Model inputs are derived from the literature and historical records. Monte Carlo simulation runs of the model are used to explore the potential of existing and future technologies to bring us ever closer to a more sustainable future instead of ever farther. This is the concept of a moving sustainability horizon (the year in the future where sustainability can be achieved with current technological progress if demand remains constant). The sustainability gap is the number of years between the present and the sustainability horizon. As demand increases, the sustainability horizon moves farther into the future. As technology improves and productivity increases, the sustainability horizon is closer to the present. Sustainability, therefore, is achieved when the sustainability horizon collides with the present, closing the sustainability gap to zero. We find one pathway for water management technology adoption and innovation that closes the sustainability gap within the reduced-order model’s outputs. In this scenario, micro-irrigation adoption, minimal climate change impacts, reduced food waste, and additional transformative innovations such as smart greenhouses and agrivoltaic systems are collectively needed. The model shows that, in the absence of these changes, and continuing along our current course, the productivity of the agricultural system would become insufficient in the decade following 2050.more » « less
-
null (Ed.)This research presents a new variable rate drip irrigation (VRDI) emitter design that can monitor individual water drops. Conventional drip systems cannot monitor the individual water flow rate per emitter. Application uniformity for conventional drip emitters can be decreased by clogged emitters, irregular emitter orifices, and decreases in pressure. A VRDI emitter can overcome the irrigation challenges in the field by increasing water application uniformity for each plant and reducing water losses. Flow rate is affected by the diameter of the delivery pipe and the pressure of the irrigation delivery system. This study compares the volumetric water flow rate for conventional drip emitters and new VRDI emitters with variable diameters inner (1 mm, 1.2 mm, 1.4 mm, and 1.6 mm) and outside (3 mm, 3.5 mm, 4 mm, and 4.5 mm) with three pressures (34 kPa, 69 kPa, and 103 kPa). The tests revealed that the new VRDI emitter had flow rates that increased as the operating pressure increased similar to a conventional drip tube. The flow rate was slightly increased in the VRDI with pressure, but even this increase did not show large changes in the flow rate. The flow rate of the conventional drip tube was 88% larger than the VRDI emitter for all pressures (p < 0.05). However, operating pressure did not affect the drop sizes at the VRDI emitter, but the generalized linear mixed models (GLM) results show that volume per drop was impacted by the outside diameter of the VRDI outlet (p < 0.05). The interaction between the inner and outside diameter was also significant at p < 0.01, and the interaction between outside diameter and pressure was statistically significant at p < 0.01. The electronic components used to control our VRDI emitter are readily compatible with off-the-shelf data telemetry solutions; thus, each emitter could be controlled remotely and relay data to a centralized data repository or decision-maker, and a plurality of these emitters could be used to enable full-field scale VRDI.more » « less
An official website of the United States government
