Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The rate of growth or retreat of the Greenland and Antarctic ice sheets remains a highly uncertain component of future sea level change. Here we examine the simulation of Greenland ice sheet surface mass balance (GrIS SMB) in a development branch of the ModelE2 version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM). GCMs are often limited in their ability to represent SMB compared with polar region regional climate models. We compare ModelE2‐simulated GrIS SMB for present‐day (1996–2005) simulations with fixed ocean conditions, at a spatial resolution of 2° latitude by 2.5° longitude (~200 km), with SMB simulated by the Modèle Atmosphérique Régionale (MAR) regional climate model (1996–2005 at a 25‐km resolution). ModelE2 SMB agrees well with MAR SMB on the whole, but there are distinct spatial patterns of differences and large differences in some SMB components. The impacts of changes to the ModelE2 surface are tested, including a subgrid‐scale representation of SMB with surface elevation classes. This has a minimal effect on ice sheet‐wide SMB but corrects local biases. Replacing fixed surface albedo with satellite‐derived values and an age‐dependent scheme has a larger impact, increasing simulated melt by 60%–100%. We also find that lower surface albedo can enhance the effects of elevation classes. Reducing ModelE2 surface roughness length to values closer to MAR reduces sublimation by ~50%. Further work is required to account for meltwater refreezing in ModelE2 and to understand how differences in atmospheric processes and model resolution influence simulated SMB.more » « less
- 
            Abstract. Surface mass loss from the Greenland ice sheet (GrIS) hasaccelerated over the past decades, mainly due to enhanced surface meltingand liquid water runoff in response to atmospheric warming. A large portionof runoff from the GrIS originates from exposure of the darker bare ice inthe ablation zone when the overlying snow melts, where surface albedo playsa critical role in modulating the energy available for melting. In thisregard, it is imperative to understand the processes governing albedovariability to accurately project future mass loss from the GrIS. Bare-icealbedo is spatially and temporally variable and contingent on non-linearfeedbacks and the presence of light-absorbing constituents. An assessment ofmodels aiming at simulating albedo variability and associated impacts onmeltwater production is crucial for improving our understanding of theprocesses governing these feedbacks and, in turn, surface mass loss fromGreenland. Here, we report the results of a comparison of the bare-iceextent and albedo simulated by the regional climate model ModèleAtmosphérique Régional (MAR) with satellite imagery from theModerate Resolution Imaging Spectroradiometer (MODIS) for the GrIS below70∘ N. Our findings suggest that MAR overestimates bare-ice albedoby 22.8 % on average in this area during the 2000–2021 period with respectto the estimates obtained from MODIS. Using an energy balance model toparameterize meltwater production, we find this bare-ice albedo bias canlead to an underestimation of total meltwater production from the bare-icezone below 70∘ N of 42.8 % during the summers of 2000–2021.more » « less
- 
            Abstract. Light transmission into bare glacial ice affects surfaceenergy balance, biophotochemistry, and light detection and ranging (lidar)laser elevation measurements but has not previously been reported for theGreenland Ice Sheet. We present measurements of spectral transmittance at350–900 nm in bare glacial ice collected at a field site in the westernGreenland ablation zone (67.15∘ N, 50.02∘ W). Empirical irradianceattenuation coefficients at 350–750 nm are ∼ 0.9–8.0 m−1 for ice at 12–124 cm depth. The absorption minimum is at∼ 390–397 nm, in agreement with snow transmissionmeasurements in Antarctica and optical mapping of deep ice at the SouthPole. From 350–530 nm, our empirical attenuation coefficients are nearly1 order of magnitude larger than theoretical values for optically pureice. The estimated absorption coefficient at 400 nm suggests the ice volumecontained a light-absorbing particle concentration equivalent to∼ 1–2 parts per billion (ppb) of black carbon, which is similar topre-industrial values found in remote polar snow. The equivalent mineraldust concentration is ∼ 300–600 ppb, which is similar to values forNorthern Hemisphere warm periods with low aeolian activity inferred from icecores. For a layer of quasi-granular white ice (weathering crust)extending from the surface to ∼ 10 cm depth, attenuationcoefficients are 1.5 to 4 times larger than for deeper bubbly ice. Owing tohigher attenuation in this layer of near-surface granular ice, opticalpenetration depth at 532 nm is 14 cm (20 %) lower than asymptoticattenuation lengths for optically pure bubbly ice. In addition to thetraditional concept of light scattering on air bubbles, our results implythat the granular near-surface ice microstructure of weathering crust isan important control on radiative transfer in bare ice on the Greenland IceSheet ablation zone, and we provide new values of flux attenuation,absorption, and scattering coefficients to support model development andvalidation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
