skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1714285

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fast yellow pulsating supergiants (FYPS) are a recently discovered class of evolved massive pulsators. As candidate supergiant objects, and one of the few classes of pulsating evolved massive stars, these objects have incredible potential to change our understanding of the structure and evolution of massive stars. Here we examine the lightcurves of a sample of 126 cool supergiants in the Magellanic Clouds observed by the Transiting Exoplanet Survey Satellite in order to identify pulsating stars. After making quality cuts and filtering out contaminant objects, we examine the distribution of pulsating stars in the Hertzprung–Russel (HR) diagram, and find that FYPS occupy a region above log L / L 5.0 . This luminosity boundary corresponds to stars with initial masses of ∼18–20M, consistent with the most massive red supergiant progenitors of supernovae (SNe) II-P, as well as the observed properties of SNe IIb progenitors. This threshold is in agreement with the picture that FYPS are post-RSG stars. Finally, we characterize the behavior of FYPS pulsations as a function of their location in the HR diagram. We find low-frequency pulsations at higher effective temperatures, and higher-frequency pulsations at lower temperatures, with a transition between the two behaviors at intermediate temperatures. The observed properties of FYPS make them fascinating objects for future theoretical study. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)