skip to main content

Title: The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants
Abstract

Fast yellow pulsating supergiants (FYPS) are a recently discovered class of evolved massive pulsators. As candidate supergiant objects, and one of the few classes of pulsating evolved massive stars, these objects have incredible potential to change our understanding of the structure and evolution of massive stars. Here we examine the lightcurves of a sample of 126 cool supergiants in the Magellanic Clouds observed by the Transiting Exoplanet Survey Satellite in order to identify pulsating stars. After making quality cuts and filtering out contaminant objects, we examine the distribution of pulsating stars in the Hertzprung–Russel (HR) diagram, and find that FYPS occupy a region abovelogL/L5.0. This luminosity boundary corresponds to stars with initial masses of ∼18–20M, consistent with the most massive red supergiant progenitors of supernovae (SNe) II-P, as well as the observed properties of SNe IIb progenitors. This threshold is in agreement with the picture that FYPS are post-RSG stars. Finally, we characterize the behavior of FYPS pulsations as a function of their location in the HR diagram. We find low-frequency pulsations at higher effective temperatures, and higher-frequency pulsations at lower temperatures, with a transition between the two behaviors at intermediate temperatures. The observed properties more » of FYPS make them fascinating objects for future theoretical study.

« less
Authors:
; ; ; ; ;
Award ID(s):
1714285
Publication Date:
NSF-PAR ID:
10380500
Journal Name:
The Astrophysical Journal
Volume:
940
Issue:
1
Page Range or eLocation-ID:
Article No. 27
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present near- and mid-infrared (0.9–18μm) photometry of supernova (SN) 2021afdx, which was imaged serendipitously with the James Webb Space Telescope (JWST) as part of its Early Release Observations of the Cartwheel Galaxy. Our ground-based optical observations show it is likely to be a Type IIb SN, the explosion of a yellow supergiant, and its infrared spectral energy distribution (SED) ≈200 days after explosion shows two distinct components, which we attribute to hot ejecta and warm dust. By fitting models of dust emission to the SED, we derive a dust mass of(3.80.3+0.5)×103M, which is the highest yet observed in a Type IIb SN but consistent with other Type II SNe observed by the Spitzer Space Telescope. We also find that the radius of the dust is significantly larger than the radius of the ejecta, as derived from spectroscopic velocities during the photospheric phase, which implies that we are seeing an infrared echo off of preexisting dust in the progenitor environment, rather than dust newly formed by the SN. Our results show the power of JWST to address questions of dust formation in SNe, and therefore the presence of dust in the early universe,more »with much larger samples than have been previously possible.

    « less
  2. Abstract

    Many core-collapse supernovae (SNe) with hydrogen-poor and low-mass ejecta, such as ultra-stripped SNe and type Ibn SNe, are observed to interact with dense circumstellar material (CSM). These events likely arise from the core collapse of helium stars that have been heavily stripped by a binary companion and have ejected significant mass during the last weeks to years of their lives. In helium star models run to days before core collapse we identify a range of helium core masses ≈2.5–3Mwhose envelopes expand substantially due to the helium shell burning while the core undergoes neon and oxygen burning. When modeled in binary systems, the rapid expansion of these helium stars induces extremely high rates of late-stage mass transfer (Ṁ102Myr1) beginning weeks to decades before core collapse. We consider two scenarios for producing CSM in these systems: either mass transfer remains stable and mass loss is driven from the system in the vicinity of the accreting companion, or mass transfer becomes unstable and causes a common envelope event (CEE) through which the helium envelope is unbound. The ensuing CSM properties are consistent with the CSM masses (∼10−2–1M) and radii (∼1013–1016cm) inferred for ultra-stripped SNe and severalmore »type Ibn SNe. Furthermore, systems that undergo a CEE could produce short-period neutron star binaries that merge in less than 100 Myr.

    « less
  3. Abstract

    We report the discovery of MAGAZ3NE J095924+022537, a spectroscopically confirmed protocluster atz=3.36650.0012+0.0009around a spectroscopically confirmedUVJ-quiescent ultramassive galaxy (UMG;M=2.340.34+0.23×1011M) in the COSMOS UltraVISTA field. We present a total of 38 protocluster members (14 spectroscopic and 24 photometric), including the UMG. Notably, and in marked contrast to protoclusters previously reported at this epoch that have been found to contain predominantly star-forming members, we measure an elevated fraction of quiescent galaxies relative to the coeval field (73.316.9+26.7%versus11.64.9+7.1%for galaxies with stellar massM≥ 1011M). This high quenched fraction provides a striking and important counterexample to the seeming ubiquitousness of star-forming galaxies in protoclusters atz> 2 and suggests, rather, that protoclusters exist in a diversity of evolutionary states in the early universe. We discuss the possibility that we might be observing either “early mass quenching” or nonclassical “environmental quenching.” We also present the discovery of MAGAZ3NE J100028+023349, a second spectroscopically confirmed protocluster, at a very similar redshift ofz=3.38010.0281+0.0213. We present a total of 20 protocluster members, 12 of which are photometric and eight spectroscopic including a poststarburst UMG (M=2.950.20+0.21×1011M). Protoclusters MAGAZ3NE J0959more »and MAGAZ3NE J1000 are separated by 18′ on the sky (35 comoving Mpc), in good agreement with predictions from simulations for the size of “Coma”-type cluster progenitors at this epoch. It is highly likely that the two UMGs are the progenitors of Brightest Cluster Galaxies seen in massive virialized clusters at lower redshift.

    « less
  4. Abstract

    Connecting observations of core-collapse supernova explosions to the properties of their massive star progenitors is a long-sought, and challenging, goal of supernova science. Recently, Barker et al. presented bolometric light curves for a landscape of progenitors from spherically symmetric neutrino-driven core-collapse supernova (CCSN) simulations using an effective model. They find a tight relationship between the plateau luminosity of the Type II-P CCSN light curve and the terminal iron-core mass of the progenitor. Remarkably, this allows us to constrain progenitor properties with photometry alone. We analyze a large observational sample of Type II-P CCSN light curves and estimate a distribution of iron-core masses using the relationship of Barker et al. The inferred distribution matches extremely well with the distribution of iron-core masses from stellar evolutionary models and namely, contains high-mass iron cores that suggest contributions from very massive progenitors in the observational data. We use this distribution of iron-core masses to infer minimum and maximum masses of progenitors in the observational data. Using Bayesian inference methods to locate optimal initial mass function parameters, we findMmin=9.80.27+0.37andMmax=24.01.9+3.9solar masses for the observational data.

  5. Abstract

    The tidal disruption of stars by supermassive black holes (SMBHs) probes relativistic gravity. In the coming decade, the number of observed tidal disruption events (TDEs) will grow by several orders of magnitude, allowing statistical inferences of the properties of the SMBH and stellar populations. Here we analyze the probability distribution functions of the pericenter distances of stars that encounter an SMBH in the Schwarzschild geometry, where the results are completely analytic, and the Kerr metric. From this analysis we calculate the number of observable TDEs, defined to be those that come within the tidal radiusrtbut outside the direct capture radius (which is, in general, larger than the horizon radius). We find that relativistic effects result in a steep decline in the number of stars that have pericenter distancesrp≲ 10rg, whererg=GM/c2, and that for maximally spinning SMBHs the distribution function ofrpat such distances scales asfrprp4/3, or in terms ofβrt/rpscales asfββ−10/3. We find that spin has little effect on the TDE fraction until the very-high-mass end, where instead of being identically zero the rate is small (≲1% of the expected rate in the absence of relativistic effects). Effectively independent of spin, if the progenitorsmore »of TDEs reflect the predominantly low-mass stellar population and thus have masses ≲1M, we expect a substantial reduction in the rate of TDEs above 107M.

    « less