skip to main content


Search for: All records

Award ID contains: 1714693

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plants perceive a multitude of environmental signals and stresses, and integrate their response to them in ways that culminate in modified phenotypes, optimized for plant survival. This ability of plants, known as phenotypic plasticity, is found throughout evolution, in all plant lineages. For any given environment, the specifics of the response to a particular signal may vary depending on the plants’ unique physiology and ecological niche. The bryophyte lineage, including mosses, which diverged from the vascular plants ~450–430 million years ago, represent a unique ecological and phylogenetic group in plant evolution. Several aspects of the moss life cycle, their morphology including the presence of specialized tissue types and distinct anatomical features, gene repertoires and networks, as well as the habitat differ significantly from those of vascular plants. To evaluate the outcomes of these differences, we explore the phenotypic responses of mosses to environmental signals such as light, temperature, CO2, water, nutrients, and gravity, and compare those with what is known in vascular plants. We also outline knowledge gaps and formulate testable hypotheses based on the contribution of anatomical and molecular factors to specific phenotypic responses.

     
    more » « less
  2. Abstract

    Heterotrimeric G-proteins modulate multiple signaling pathways in many eukaryotes. In plants, G-proteins have been characterized primarily from a few model angiosperms and a moss. Even within this small group, they seem to affect plant phenotypes differently: G-proteins are essential for survival in monocots, needed for adaptation but are nonessential in eudicots, and are required for life cycle completion and transition from the gametophytic to sporophytic phase in the moss Physcomitrium (Physcomitrella) patens. The classic G-protein heterotrimer consists of three subunits: one Gα, one Gβ and one Gγ. The Gα protein is a catalytically active GTPase and, in its active conformation, interacts with downstream effectors to transduce signals. Gα proteins across the plant evolutionary lineage show a high degree of sequence conservation. To explore the extent to which this sequence conservation translates to their function, we complemented the well-characterized Arabidopsis Gα protein mutant, gpa1, with Gα proteins from different plant lineages and with the yeast Gpa1 and evaluated the transgenic plants for different phenotypes controlled by AtGPA1. Our results show that the Gα protein from a eudicot or a monocot, represented by Arabidopsis and Brachypodium, respectively, can fully complement all gpa1 phenotypes. However, the basal plant Gα failed to complement the developmental phenotypes exhibited by gpa1 mutants, although the phenotypes that are exhibited in response to various exogenous signals were partially or fully complemented by all Gα proteins. Our results offer a unique perspective on the evolutionarily conserved functions of G-proteins in plants.

     
    more » « less
  3. Summary

    The plant hormone abscisic acid (ABA) plays crucial roles in regulation of stress responses and growth modulation. Heterotrimeric G‐proteins are key mediators of ABA responses. Both ABA and G‐proteins have also been implicated in intracellular redox regulation; however, the extent to which reversible protein oxidation manipulates ABA and/or G‐protein signaling remains uncharacterized.

    To probe the role of reversible protein oxidation in plant stress response and its dependence on G‐proteins, we determined the ABA‐dependent reversible redoxome of wild‐type and Gβ‐protein null mutantagb1of Arabidopsis.

    We quantified 6891 uniquely oxidized cysteine‐containing peptides, 923 of which show significant changes in oxidation following ABA treatment. The majority of these changes required the presence of G‐proteins. Divergent pathways including primary metabolism, reactive oxygen species response, translation and photosynthesis exhibited both ABA‐ and G‐protein‐dependent redox changes, many of which occurred on proteins not previously linked to them.

    We report the most comprehensive ABA‐dependent plant redoxome and uncover a complex network of reversible oxidations that allow ABA and G‐proteins to rapidly adjust cellular signaling to adapt to changing environments. Physiological validation of a subset of these observations suggests that functional G‐proteins are required to maintain intracellular redox homeostasis and fully execute plant stress responses.

     
    more » « less
  4. Abstract

    Heterotrimeric G-protein complexes comprising Gα-, Gβ-, and Gγ-subunits and the regulator of G-protein signaling (RGS) are conserved across most eukaryotic lineages. Signaling pathways mediated by these proteins influence overall growth, development, and physiology. In plants, this protein complex has been characterized primarily from angiosperms with the exception of spreading-leaved earth moss (Physcomitrium patens) and Chara braunii (charophytic algae). Even within angiosperms, specific G-protein components are missing in certain species, whereas unique plant-specific variants—the extra-large Gα (XLGα) and the cysteine-rich Gγ proteins—also exist. The distribution and evolutionary history of G-proteins and their function in nonangiosperm lineages remain mostly unknown. We explored this using the wealth of available sequence data spanning algae to angiosperms representing extant species that diverged approximately 1,500 million years ago, using BLAST, synteny analysis, and custom-built Hidden Markov Model profile searches. We show that a minimal set of components forming the XLGαβγ trimer exists in the entire land plant lineage, but their presence is sporadic in algae. Additionally, individual components have distinct evolutionary histories. The XLGα exhibits many lineage-specific gene duplications, whereas Gα and RGS show several instances of gene loss. Similarly, Gβ remained constant in both number and structure, but Gγ diverged before the emergence of land plants and underwent changes in protein domains, which led to three distinct subtypes. These results highlight the evolutionary oddities and summarize the phyletic patterns of this conserved signaling pathway in plants. They also provide a framework to formulate pertinent questions on plant G-protein signaling within an evolutionary context.

     
    more » « less
  5. Summary

    Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G‐proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G‐proteins comprised of one canonical and three extra‐large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the soleor allgenes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal‐dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations ofandgenes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal‐dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G‐protein networks provides for the adaptability needed to survive under continuously changing environments.

     
    more » « less
  6. Sudhir K. Sopory (Ed.)
  7. Sopory, SK (Ed.)
    As sessile organisms, plants are constantly exposed to a variety of environmental stresses that have detrimental effects on their growth and development, leading to major crop yield losses worldwide. To cope with adverse conditions plants have developed several adaptive mechanisms. A thorough understanding these mechanisms is critical to generate plants for the future. The heterotrimeric G-protein complex, composed of Gα, Gβ, and Gγ subunits, participates in regulation of multiple cellular signaling pathways and have multifaceted roles in regulating stress responses of plants. The complex has two functional entities, the GTP-bound Gα subunit and the Gβγ dimer, both of which by interacting with additional proteins can activate various signaling networks. The involvement of G-proteins has been shown in plants’ response to drought, salinity, extreme temperatures, heavy metal, ozone, and UV-B radiation. Due to their versatility and the number of processes modulated by them, G-proteins have emerged as key targets for generating stress tolerant crops. In this review, we provide an overview of the current knowledge of the roles of G proteins in abiotic stress tolerance, with examples from model plant Arabidopsis thaliana, where these processes are most widely studied and from additional agriculturally relevant crops, where their potential is realized for human usage. 
    more » « less
  8. Abstract Heterotrimeric G-proteins regulate multiple aspects of plant growth, development, and response to biotic and abiotic stresses. While the core components of heterotrimeric G-proteins and their basic biochemistry are similar in plants and metazoans, key differences exist in their regulatory mechanisms. In particular, the activation mechanisms of plant G-proteins appear diverse and may include both canonical and novel modes. Classical G-protein-coupled receptor-like proteins exist in plants and interact with Gα proteins, but their ability to activate Gα by facilitating GDP to GTP exchange has not been demonstrated. Conversely, there is genetic and functional evidence that plant G-proteins interact with the highly prevalent receptor-like kinases (RLKs) and are phosphorylated by them. This suggests the exciting scenario that in plants the G-proteins integrate RLK-dependent signal perception at the plasma membrane with downstream effectors. Because RLKs are active kinases, it is also likely that the activity of plant G-proteins is regulated via phosphorylation/dephosphorylation rather than GTP–GDP exchange as in metazoans. This review discusses our current knowledge of the possible RLK-dependent regulatory mechanisms of plant G-protein signaling in the context of several biological systems and outlines the diversity that might exist in such regulation. 
    more » « less