Summary Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species,Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plantA. agrestisto highlight its potential in answering key questions of land plant biology and evolution.
more »
« less
Effect of environmental signals on growth and development in mosses
Abstract Plants perceive a multitude of environmental signals and stresses, and integrate their response to them in ways that culminate in modified phenotypes, optimized for plant survival. This ability of plants, known as phenotypic plasticity, is found throughout evolution, in all plant lineages. For any given environment, the specifics of the response to a particular signal may vary depending on the plants’ unique physiology and ecological niche. The bryophyte lineage, including mosses, which diverged from the vascular plants ~450–430 million years ago, represent a unique ecological and phylogenetic group in plant evolution. Several aspects of the moss life cycle, their morphology including the presence of specialized tissue types and distinct anatomical features, gene repertoires and networks, as well as the habitat differ significantly from those of vascular plants. To evaluate the outcomes of these differences, we explore the phenotypic responses of mosses to environmental signals such as light, temperature, CO2, water, nutrients, and gravity, and compare those with what is known in vascular plants. We also outline knowledge gaps and formulate testable hypotheses based on the contribution of anatomical and molecular factors to specific phenotypic responses.
more »
« less
- PAR ID:
- 10405838
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Experimental Botany
- Volume:
- 73
- Issue:
- 13
- ISSN:
- 0022-0957
- Format(s):
- Medium: X Size: p. 4514-4527
- Size(s):
- p. 4514-4527
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity.Here, we assessed the relative magnitude of eco‐evolutionary responses to interacting global change factors using a multifactorial experiment. We exposed replicates of 32Schoenoplectus americanusgenotypes ‘resurrected’ from century‐long, soil‐stored seed banks to ambient or elevated CO2, varying levels of inundation, and the presence of a competing marsh grass, across two sites with different salinities.Comparisons of responses to global change factors among age cohorts and across provenances indicated that plasticity has evolved in five of the seven traits measured. Accounting for evolutionary factors (i.e. evolution and sources of heritable variation) in statistical models explained an additional 9–31% of trait variation.Our findings indicate that evolutionary factors mediate ecological responses to environmental change. The magnitude of evolutionary change in plant traits over the last century suggests that evolution could play a role in pacing future ecosystem response to environmental change.more » « less
-
Summary Mosses hold a unique position in plant evolution and are crucial for protecting natural, long‐term carbon storage systems such as permafrost and bogs. Due to small stature, mosses grow close to the soil surface and are exposed to high levels of CO2, produced by soil respiration. However, the impact of elevated CO2(eCO2) levels on mosses remains underexplored.We determined the growth responses of the mossPhyscomitrium patensto eCO2in combination with different nitrogen levels and characterized the underlying physiological and metabolic changes.Three distinct growth characteristics, an early transition to caulonema, the development of longer, highly pigmented rhizoids, and increased biomass, define the phenotypic responses ofP. patensto eCO2. Elevated CO2impacts growth by enhancing the level of a sugar signaling metabolite, T6P. The quantity and form of nitrogen source influences these metabolic and phenotypic changes. Under eCO2,P. patensexhibits a diffused growth pattern in the presence of nitrate, but ammonium supplementation results in dense growth with tall gametophores, demonstrating high phenotypic plasticity under different environments.These results provide a framework for comparing the eCO2responses ofP. patenswith other plant groups and provide crucial insights into moss growth that may benefit climate change models.more » « less
-
Abstract Plant functional strategies change considerably as plants develop, driven by intraindividual variability in anatomical, morphological, physiological and architectural traits.Developmental trait variation arises through the complex interplay among genetically regulated phase change (i.e. ontogeny), increases in plant age and size, and phenotypic plasticity to changing environmental conditions. Although spatial drivers of intraspecific trait variation have received extensive research attention, developmentally driven intraspecific trait variation is largely overlooked, despite widespread occurrence.Ontogenetic trait variation is genetically regulated, leads to dramatic changes in plant phenotypes and evolves in response to predictable changes in environmental conditions as plants develop.Evidence has accumulated to support a general shift from fast to slow relative growth rates and from shade to sun leaves as plants develop from the highly competitive but shady juvenile niche to the stressful adult niche in the systems studied to date.Nonetheless, there are major gaps in our knowledge due to examination of only a few environmental factors selecting for the evolution of ontogenetic trajectories, variability in how ontogeny is assigned, biogeographic sampling biases on trees in temperate biomes, dependencies on a few broadly sampled leaf morphological traits and a lack of longitudinal studies that track ontogeny within individuals. Filling these gaps will enhance our understanding of plant functional ecology and provide a framework for predicting the effects of global change threats that target specific ontogenetic stages. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract The vascular plant-specific, cysteine-rich type III Gγ proteins, which are integral components of the heterotrimeric G-protein complex, play crucial roles in regulating a multitude of plant processes, including those related to crop yield and responses to abiotic stresses. The presence of multiple copies of type III Gγ proteins in most plants and a propensity of the presence of specific truncated alleles in many cultivated crops present an ambiguous picture of their roles in modulating specific responses. AGG3 is a canonical type III Gγ protein of Arabidopsis, and its overexpression in additional model crops offers the opportunity to directly evaluate the effects of protein expression levels on plant phenotypes. We have shown that AGG3 overexpression in the monocot model Setaria viridis leads to an increase in seed yield. In this study, we have investigated the response of the S. viridis plants overexpressing AGG3 to heat stress (HS), one of the most important abiotic stresses affecting crops worldwide. We show that a short span of HS at a crucial developmental time point has a significant effect on plant yield in the later stages. We also show that plants with higher levels of AGG3 are more tolerant to HS. This is attributed to an altered regulation of stress-responsive genes and improved modulation of the photosynthetic efficiency during the stress. Overall, our results confirm that AGG3 plays a crucial role in regulating plant responses to unfavorable environmental conditions and may contribute positively to avoiding crop yield losses.more » « less